{"title":"A Portable 28-GHz Channel Sounder Platform and Measurement Results From Close-to-Ground Field Tests","authors":"Edward A. Ball;Sumin David Joseph","doi":"10.1109/OJIM.2023.3259025","DOIUrl":null,"url":null,"abstract":"This article describes a novel, bespoke, and low-cost 28-GHz RF TX and RX front end design that has been combined with a commercial Software-Defined Radio and Raspberry Pi controller to realize a portable propagation measurement system for the 28-GHz band. The complete sounder system can resolve an impulse from RX powers down to −107 dBm (3-dB impulse SNR) and the sounder TX can generate a signal of −8 dBm. Therefore, using 20-dBi antennas supports path-loss (PL) measurements of 139 dB. The sounder can resolve time-domain reflections to 33 ns in a channel measurement bandwidth of 60 MHz, producing both time-domain and frequency-domain results. The complete sounding system has been used to perform close-to-ground RF channel measurements, with propagation loss models and time-domain impulses extracted. Close-to-ground measurement is an underreported area of propagation research that is relevant for novel use-cases, such as in military applications or for mobile device-to-device communications. A key initial finding from the trials is that the PLs for 28-GHz indoor and outdoor links at circa 70 cm above ground seem close to that of free space, with very few strong reflections with delays exceeding 33 ns.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"2 ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552935/10025401/10076827.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Instrumentation and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10076827/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article describes a novel, bespoke, and low-cost 28-GHz RF TX and RX front end design that has been combined with a commercial Software-Defined Radio and Raspberry Pi controller to realize a portable propagation measurement system for the 28-GHz band. The complete sounder system can resolve an impulse from RX powers down to −107 dBm (3-dB impulse SNR) and the sounder TX can generate a signal of −8 dBm. Therefore, using 20-dBi antennas supports path-loss (PL) measurements of 139 dB. The sounder can resolve time-domain reflections to 33 ns in a channel measurement bandwidth of 60 MHz, producing both time-domain and frequency-domain results. The complete sounding system has been used to perform close-to-ground RF channel measurements, with propagation loss models and time-domain impulses extracted. Close-to-ground measurement is an underreported area of propagation research that is relevant for novel use-cases, such as in military applications or for mobile device-to-device communications. A key initial finding from the trials is that the PLs for 28-GHz indoor and outdoor links at circa 70 cm above ground seem close to that of free space, with very few strong reflections with delays exceeding 33 ns.