CIDGIKc: Distance-Geometric Inverse Kinematics for Continuum Robots

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Hanna Jiamei Zhang;Matthew Giamou;Filip Marić;Jonathan Kelly;Jessica Burgner-Kahrs
{"title":"CIDGIKc: Distance-Geometric Inverse Kinematics for Continuum Robots","authors":"Hanna Jiamei Zhang;Matthew Giamou;Filip Marić;Jonathan Kelly;Jessica Burgner-Kahrs","doi":"10.1109/LRA.2023.3322078","DOIUrl":null,"url":null,"abstract":"The small size, high dexterity, and intrinsic compliance of continuum robots (CRs) make them well suited for constrained environments. Solving the inverse kinematics (IK), that is finding robot joint configurations that satisfy desired position or pose queries, is a fundamental challenge in motion planning, control, and calibration for any robot structure. For CRs, the need to avoid obstacles in tightly confined workspaces greatly complicates the search for feasible IK solutions. Without an accurate initialization or multiple re-starts, existing algorithms often fail to find a solution. We present \n<monospace>CIDGIKc</monospace>\n (Convex Iteration for Distance-Geometric Inverse Kinematics for Continuum Robots), an algorithm that solves these nonconvex feasibility problems with a sequence of semidefinite programs whose objectives are designed to encourage low-rank minimizers. \n<monospace>CIDGIKc</monospace>\n is enabled by a novel distance-geometric parameterization of constant curvature segment geometry for CRs with extensible segments. The resulting IK formulation involves only quadratic expressions and can efficiently incorporate a large number of collision avoidance constraints. Our experimental results demonstrate >98% solve success rates within complex, highly cluttered environments which existing algorithms cannot account for.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"8 11","pages":"7679-7686"},"PeriodicalIF":4.6000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10271523/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The small size, high dexterity, and intrinsic compliance of continuum robots (CRs) make them well suited for constrained environments. Solving the inverse kinematics (IK), that is finding robot joint configurations that satisfy desired position or pose queries, is a fundamental challenge in motion planning, control, and calibration for any robot structure. For CRs, the need to avoid obstacles in tightly confined workspaces greatly complicates the search for feasible IK solutions. Without an accurate initialization or multiple re-starts, existing algorithms often fail to find a solution. We present CIDGIKc (Convex Iteration for Distance-Geometric Inverse Kinematics for Continuum Robots), an algorithm that solves these nonconvex feasibility problems with a sequence of semidefinite programs whose objectives are designed to encourage low-rank minimizers. CIDGIKc is enabled by a novel distance-geometric parameterization of constant curvature segment geometry for CRs with extensible segments. The resulting IK formulation involves only quadratic expressions and can efficiently incorporate a large number of collision avoidance constraints. Our experimental results demonstrate >98% solve success rates within complex, highly cluttered environments which existing algorithms cannot account for.
CIDGIKc:连续体机器人的距离几何逆运动学
连续体机器人(CR)体积小、灵活性高、固有的顺应性使其非常适合受限环境。求解逆运动学(IK),即找到满足所需位置或姿态查询的机器人关节配置,是任何机器人结构的运动规划、控制和校准中的一个基本挑战。对于CR来说,在严格限制的工作空间中避免障碍的需求大大复杂了寻找可行IK解决方案的过程。如果没有准确的初始化或多次重新启动,现有的算法往往无法找到解决方案。我们提出了CIDGIKc(连续机器人距离几何逆运动学的凸迭代),这是一种用一系列半定程序解决这些非凸可行性问题的算法,其目标是鼓励低阶最小化者。CIDGIKc是通过具有可扩展线段的CR的恒定曲率线段几何的新型距离几何参数化实现的。所得到的IK公式仅涉及二次表达式,并且可以有效地结合大量碰撞避免约束。我们的实验结果表明,在现有算法无法解释的复杂、高度杂乱的环境中,98%以上的解决成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信