Shovon Dey;Can Ni;Alberto Leon Cevallos;Raju Machupalli;Mrinal Mandal;Masum Hossain
{"title":"Sparsity-Aware 25-Gb/s Memory Link With 0.0375-pJ/bit Signaling Efficiency for Machine Learning Hardware","authors":"Shovon Dey;Can Ni;Alberto Leon Cevallos;Raju Machupalli;Mrinal Mandal;Masum Hossain","doi":"10.1109/OJSSCS.2022.3213633","DOIUrl":null,"url":null,"abstract":"This work describes a multiplication and accumulation (MAC) accelerator integrated with a memory interface. The link is designed to take advantage of naturally existing sparsity in a neural network. The link operating at 16 Gb/s achieves 0.1875-pJ/bit signaling efficiency for random data but, for sparse data, signaling efficiency can improve to 0.0375 pJ/bit. Similarly, the MAC unit accelerates the computation utilizing the phase domain accumulation process and provides a 40% improvement in energy efficiency for sparse data and at the same achieves inference accuracy of 94% for the MNIST data set.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"2 ","pages":"276-287"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782712/9733783/09916077.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9916077/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work describes a multiplication and accumulation (MAC) accelerator integrated with a memory interface. The link is designed to take advantage of naturally existing sparsity in a neural network. The link operating at 16 Gb/s achieves 0.1875-pJ/bit signaling efficiency for random data but, for sparse data, signaling efficiency can improve to 0.0375 pJ/bit. Similarly, the MAC unit accelerates the computation utilizing the phase domain accumulation process and provides a 40% improvement in energy efficiency for sparse data and at the same achieves inference accuracy of 94% for the MNIST data set.