Sparsity-Aware 25-Gb/s Memory Link With 0.0375-pJ/bit Signaling Efficiency for Machine Learning Hardware

Shovon Dey;Can Ni;Alberto Leon Cevallos;Raju Machupalli;Mrinal Mandal;Masum Hossain
{"title":"Sparsity-Aware 25-Gb/s Memory Link With 0.0375-pJ/bit Signaling Efficiency for Machine Learning Hardware","authors":"Shovon Dey;Can Ni;Alberto Leon Cevallos;Raju Machupalli;Mrinal Mandal;Masum Hossain","doi":"10.1109/OJSSCS.2022.3213633","DOIUrl":null,"url":null,"abstract":"This work describes a multiplication and accumulation (MAC) accelerator integrated with a memory interface. The link is designed to take advantage of naturally existing sparsity in a neural network. The link operating at 16 Gb/s achieves 0.1875-pJ/bit signaling efficiency for random data but, for sparse data, signaling efficiency can improve to 0.0375 pJ/bit. Similarly, the MAC unit accelerates the computation utilizing the phase domain accumulation process and provides a 40% improvement in energy efficiency for sparse data and at the same achieves inference accuracy of 94% for the MNIST data set.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"2 ","pages":"276-287"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782712/9733783/09916077.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9916077/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work describes a multiplication and accumulation (MAC) accelerator integrated with a memory interface. The link is designed to take advantage of naturally existing sparsity in a neural network. The link operating at 16 Gb/s achieves 0.1875-pJ/bit signaling efficiency for random data but, for sparse data, signaling efficiency can improve to 0.0375 pJ/bit. Similarly, the MAC unit accelerates the computation utilizing the phase domain accumulation process and provides a 40% improvement in energy efficiency for sparse data and at the same achieves inference accuracy of 94% for the MNIST data set.
用于机器学习硬件的稀疏感知25 Gb/s内存链路,具有0.0375-pJ/bit的信号效率
这项工作描述了一个与存储器接口集成的乘法和累加(MAC)加速器。该链路被设计为利用神经网络中自然存在的稀疏性。以16Gb/s操作的链路对于随机数据实现了0.1875-pJ/比特的信令效率,但是对于稀疏数据,信令效率可以提高到0.0375pJ/位。类似地,MAC单元利用相域累积过程加速计算,并为稀疏数据提供40%的能效提高,同时为MNIST数据集实现94%的推断精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信