Modulated Model Predictive Control Applied to LCL-Filtered Grid-Tied Inverters: A Convex Optimization Approach

IF 7.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Caio R. D. Osório;Dimas A. Schuetz;Gustavo G. Koch;Fernanda Carnielutti;Daniel M. Lima;Luiz A. Maccari Jr;Vinícius F. Montagner;Humberto Pinheiro
{"title":"Modulated Model Predictive Control Applied to LCL-Filtered Grid-Tied Inverters: A Convex Optimization Approach","authors":"Caio R. D. Osório;Dimas A. Schuetz;Gustavo G. Koch;Fernanda Carnielutti;Daniel M. Lima;Luiz A. Maccari Jr;Vinícius F. Montagner;Humberto Pinheiro","doi":"10.1109/OJIA.2021.3134585","DOIUrl":null,"url":null,"abstract":"This paper proposes a modulated model predictive strategy suitable for current control of grid-connected converters with LCL filters, allowing fast dynamic responses with a fixed switching frequency, for both strong and weak grid conditions. The duty cycles are optimized within each switching period based on the minimization of a quadratic cost function with linear constraints from the space vector modulation. Full and reduced-order models are considered for the control design, and closed-form analytical solutions for the optimization problem are derived based on the Karush-Kuhn-Tucker conditions. The closed-form expressions for the optimal solution make it possible to implement the algorithm in real time using off-the-shelf microcontrollers. Extensive evaluation illustrates good transient and steady state performances for different grid conditions. In addition, the proposed MPC takes into account the voltage synthesis capability of the inverter and copes with overmodulation in an orderly fashion even in large transients.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"2 ","pages":"366-377"},"PeriodicalIF":7.9000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/9329249/09648217.pdf","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9648217/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 9

Abstract

This paper proposes a modulated model predictive strategy suitable for current control of grid-connected converters with LCL filters, allowing fast dynamic responses with a fixed switching frequency, for both strong and weak grid conditions. The duty cycles are optimized within each switching period based on the minimization of a quadratic cost function with linear constraints from the space vector modulation. Full and reduced-order models are considered for the control design, and closed-form analytical solutions for the optimization problem are derived based on the Karush-Kuhn-Tucker conditions. The closed-form expressions for the optimal solution make it possible to implement the algorithm in real time using off-the-shelf microcontrollers. Extensive evaluation illustrates good transient and steady state performances for different grid conditions. In addition, the proposed MPC takes into account the voltage synthesis capability of the inverter and copes with overmodulation in an orderly fashion even in large transients.
调制模型预测控制在LCL滤波并网逆变器中的应用:一种凸优化方法
本文提出了一种适用于带有LCL滤波器的并网转换器电流控制的调制模型预测策略,该策略允许在强电网和弱电网条件下以固定的开关频率进行快速动态响应。基于具有来自空间矢量调制的线性约束的二次成本函数的最小化,在每个开关周期内优化占空比。控制设计考虑了全阶和降阶模型,并基于Karush-Kuhn-Tucker条件推导了优化问题的闭式解析解。最优解的闭合形式表达式使得使用现成的微控制器实时实现算法成为可能。广泛的评估表明,在不同的电网条件下,具有良好的瞬态和稳态性能。此外,所提出的MPC考虑了逆变器的电压合成能力,并以有序的方式处理过调制,即使在大的瞬态中也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信