On Real-Time Hybrid Testing of Ocean Wave Energy Conversion Systems: An Experimental Study

IF 7.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ali S. Haider;Ted K. A. Brekken;Ryan G. Coe;Giorgio Bacelli;Alan McCall
{"title":"On Real-Time Hybrid Testing of Ocean Wave Energy Conversion Systems: An Experimental Study","authors":"Ali S. Haider;Ted K. A. Brekken;Ryan G. Coe;Giorgio Bacelli;Alan McCall","doi":"10.1109/OJIA.2022.3148388","DOIUrl":null,"url":null,"abstract":"The growing wave energy sector requires an efficient and flexible testing process for the development phase of wave energy systems. Real-time hybrid testing is a promising technique for the accelerated testing of wave energy conversion systems. This article presents an experimental study on developing a hybrid testing platform for wave energy systems at the Wallace Energy System and Renewables Facility (WESRF) at Oregon State University. The wave energy conversion system is broken down into numeric (i.e., virtual) and physical (i.e., hardware) components. The numeric component involves software components such as the control algorithm for Wave Energy Converter (WEC) and controller for the power electronic converters and numerical models for the WEC device hydrodynamics. The hardware involves an ocean wave emulator testbed, Power Take-Off (PTO) mechanism, power electronics, and instrumentation. The numeric components are implemented in a real-time target machine and are interfaced with the experimental system. A case study implementation of Nonlinear Model Predictive Control (NMPC) is presented for a single degree of freedom heaving nonlinear WEC model with a Permanent Magnet Synchronous Generator (PMSG) as a PTO system. A Field-Oriented Control (FOC) algorithm controls the PMSG-PTO generation using a three-phase Integrated Intelligent Power (IIP) module converter. A demonstration of the proposed hybrid testing setup is provided.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"3 ","pages":"30-40"},"PeriodicalIF":7.9000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/9666452/09705552.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9705552/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

Abstract

The growing wave energy sector requires an efficient and flexible testing process for the development phase of wave energy systems. Real-time hybrid testing is a promising technique for the accelerated testing of wave energy conversion systems. This article presents an experimental study on developing a hybrid testing platform for wave energy systems at the Wallace Energy System and Renewables Facility (WESRF) at Oregon State University. The wave energy conversion system is broken down into numeric (i.e., virtual) and physical (i.e., hardware) components. The numeric component involves software components such as the control algorithm for Wave Energy Converter (WEC) and controller for the power electronic converters and numerical models for the WEC device hydrodynamics. The hardware involves an ocean wave emulator testbed, Power Take-Off (PTO) mechanism, power electronics, and instrumentation. The numeric components are implemented in a real-time target machine and are interfaced with the experimental system. A case study implementation of Nonlinear Model Predictive Control (NMPC) is presented for a single degree of freedom heaving nonlinear WEC model with a Permanent Magnet Synchronous Generator (PMSG) as a PTO system. A Field-Oriented Control (FOC) algorithm controls the PMSG-PTO generation using a three-phase Integrated Intelligent Power (IIP) module converter. A demonstration of the proposed hybrid testing setup is provided.
海浪能量转换系统实时混合测试的实验研究
不断增长的波浪能部门需要在波浪能系统的开发阶段进行高效和灵活的测试。实时混合测试是一种很有前途的波能转换系统加速测试技术。本文介绍了俄勒冈州立大学华莱士能源系统和可再生能源设施(WESRF)开发波浪能系统混合测试平台的实验研究。波浪能量转换系统被分解为数字(即虚拟)和物理(即硬件)组件。数值组件包括软件组件,例如用于波能转换器(WEC)的控制算法和用于电力电子转换器的控制器以及用于WEC装置流体动力学的数值模型。硬件包括海浪模拟器试验台、动力输出(PTO)机构、电力电子设备和仪器。数值组件在实时目标机中实现,并与实验系统接口。针对以永磁同步发电机(PMSG)为动力输出系统的单自由度起伏非线性WEC模型,给出了非线性模型预测控制(NMPC)的实例研究。现场定向控制(FOC)算法使用三相集成智能电源(IIP)模块转换器控制PMSG-PTO的生成。提供了所提出的混合测试装置的演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信