Experimental Wireless Link and SAR Assessments of an Implantable PIFA for Biotelemetry in the 2.45 GHz Band

IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Muhammad Solihin Zulkefli;Kai Zhang;Mariella Sarestoniemi;Sami Myllymäki;William G. Whittow;Sen Yan;Ping Jack Soh
{"title":"Experimental Wireless Link and SAR Assessments of an Implantable PIFA for Biotelemetry in the 2.45 GHz Band","authors":"Muhammad Solihin Zulkefli;Kai Zhang;Mariella Sarestoniemi;Sami Myllymäki;William G. Whittow;Sen Yan;Ping Jack Soh","doi":"10.1109/JERM.2023.3294707","DOIUrl":null,"url":null,"abstract":"An experimental wireless link and specific absorption rate (SAR) assessment is presented in this work. A compact planar inverted-F antenna (PIFA) is designed and evaluated for biotelemetry application as an antenna at 2.45 GHz band. The proposed antenna provided a satisfactory bandwidth per unit volume using a two-layered stacked structure consisting of a high-frequency laminate and a low loss ceramic layer. The antenna was first co-designed inside several different types of phantom boxes to optimize its performance, considering computational resources. Next, a semisolid intestinal phantom model used in simulations were chosen to be fabricated for experimental evaluations. Evaluation results indicated a satisfactory antenna's operation from 2.13 to 2.81 GHz (bandwidth of 27.8%), with realized gains of −26.49 dBi when implanted at 45 mm inside the phantom. Next, measurements were performed on the antenna's communication link with a wearable antenna to study the effects its depth (from 10 to 45mm), indicating transmission coefficients of between −40 and −60 dB at 2.45 GHz. Finally, its SAR levels are evaluated experimentally using a commercial measurement system when implanted within the human tissue. Results indicated satisfactory level of 0.685 W/kg (averaged over 10 g of tissues) and is suitable for biotelemetry application.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10196669/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

An experimental wireless link and specific absorption rate (SAR) assessment is presented in this work. A compact planar inverted-F antenna (PIFA) is designed and evaluated for biotelemetry application as an antenna at 2.45 GHz band. The proposed antenna provided a satisfactory bandwidth per unit volume using a two-layered stacked structure consisting of a high-frequency laminate and a low loss ceramic layer. The antenna was first co-designed inside several different types of phantom boxes to optimize its performance, considering computational resources. Next, a semisolid intestinal phantom model used in simulations were chosen to be fabricated for experimental evaluations. Evaluation results indicated a satisfactory antenna's operation from 2.13 to 2.81 GHz (bandwidth of 27.8%), with realized gains of −26.49 dBi when implanted at 45 mm inside the phantom. Next, measurements were performed on the antenna's communication link with a wearable antenna to study the effects its depth (from 10 to 45mm), indicating transmission coefficients of between −40 and −60 dB at 2.45 GHz. Finally, its SAR levels are evaluated experimentally using a commercial measurement system when implanted within the human tissue. Results indicated satisfactory level of 0.685 W/kg (averaged over 10 g of tissues) and is suitable for biotelemetry application.
2.45GHz波段生物遥测用植入式PIFA的实验无线链路和SAR评估
本文介绍了一种实验性的无线链路和比吸收率(SAR)评估方法。设计并评估了一种紧凑型平面倒F天线(PIFA)作为2.45GHz频带的天线,用于生物遥测应用。所提出的天线使用由高频层压板和低损耗陶瓷层组成的双层堆叠结构,提供了令人满意的单位体积带宽。该天线最初是在几种不同类型的幻影盒内共同设计的,以优化其性能,同时考虑到计算资源。接下来,选择模拟中使用的半固体肠道体模模型进行实验评估。评估结果表明,天线在2.13至2.81 GHz(带宽27.8%)范围内的工作令人满意,当植入体模内部45 mm时,实现的增益为-26.49 dBi。接下来,对天线与可穿戴天线的通信链路进行了测量,以研究其深度(从10到45mm)的影响,表明2.45 GHz时的传输系数在−40到−60 dB之间。最后,当植入人体组织内时,使用商业测量系统对其SAR水平进行实验评估。结果表明0.685W/kg(平均超过10g组织)的令人满意的水平,并且适合生物遥测应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.40%
发文量
58
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信