Wireless Power Transfer to Biomedical Implants Using a Class-E Inverter and a Class-DE Rectifier

IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Tom P. G. van Nunen;Rob M. C. Mestrom;Hubregt J. Visser
{"title":"Wireless Power Transfer to Biomedical Implants Using a Class-E Inverter and a Class-DE Rectifier","authors":"Tom P. G. van Nunen;Rob M. C. Mestrom;Hubregt J. Visser","doi":"10.1109/JERM.2023.3267042","DOIUrl":null,"url":null,"abstract":"In this article, we propose a strategy for the design of a wireless power transfer system consisting of a class-E inverter, a half-bridge class-DE rectifier, and two coupled coils. The system is optimized for maximum power transfer efficiency. The design is validated via a case study, for which a wireless power transfer link to a neuroprosthesis was designed. After circuit simulations, a prototype was realized and measured. There is a good agreement between the calculated, simulated and measured voltages and currents. The prototype delivers \n<inline-formula><tex-math>${\\text {80}}$</tex-math></inline-formula>\n mW, \n<inline-formula><tex-math>${\\text {7}}$</tex-math></inline-formula>\n V to a biomedical implant at \n<inline-formula><tex-math>${\\text {6.78}}$</tex-math></inline-formula>\n MHz, the transfer efficiency is \n<inline-formula><tex-math>${\\text {52}}$</tex-math></inline-formula>\n to 68%, depending on the alignment. The end-to-end efficiency, with the controller and gate driver also taken into account, is \n<inline-formula><tex-math>${\\text {39}}$</tex-math></inline-formula>\n to 57%. Electromagnetic and thermal simulations were performed to verify compliance with relevant safety regulations on specific absorption rate (SAR) levels, magnetic field strength, and heat generation in the implant, for separation distances between the coils of \n<inline-formula><tex-math>${\\text {8}}$</tex-math></inline-formula>\n to \n<inline-formula><tex-math>${\\text {15}}$</tex-math></inline-formula>\n mm, and transverse misalignment from \n<inline-formula><tex-math>${\\text {0}}$</tex-math></inline-formula>\n to \n<inline-formula><tex-math>$\\text {15}$</tex-math></inline-formula>\n mm.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"7 3","pages":"202-209"},"PeriodicalIF":3.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7397573/10226431/10113711.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10113711/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we propose a strategy for the design of a wireless power transfer system consisting of a class-E inverter, a half-bridge class-DE rectifier, and two coupled coils. The system is optimized for maximum power transfer efficiency. The design is validated via a case study, for which a wireless power transfer link to a neuroprosthesis was designed. After circuit simulations, a prototype was realized and measured. There is a good agreement between the calculated, simulated and measured voltages and currents. The prototype delivers ${\text {80}}$ mW, ${\text {7}}$ V to a biomedical implant at ${\text {6.78}}$ MHz, the transfer efficiency is ${\text {52}}$ to 68%, depending on the alignment. The end-to-end efficiency, with the controller and gate driver also taken into account, is ${\text {39}}$ to 57%. Electromagnetic and thermal simulations were performed to verify compliance with relevant safety regulations on specific absorption rate (SAR) levels, magnetic field strength, and heat generation in the implant, for separation distances between the coils of ${\text {8}}$ to ${\text {15}}$ mm, and transverse misalignment from ${\text {0}}$ to $\text {15}$ mm.
使用E类逆变器和DE类整流器将无线功率传输到生物医学植入物
在本文中,我们提出了一种无线电力传输系统的设计策略,该系统由E类逆变器、半桥DE类整流器和两个耦合线圈组成。该系统经过优化,可实现最大功率传输效率。该设计通过一个案例研究进行了验证,为此设计了一个到神经假体的无线功率传输链路。经过电路仿真,实现并测量了样机。计算的、模拟的和测量的电压和电流之间有很好的一致性。原型以${\text{6.78}$MHz向生物医学植入物提供${\text{80}$mW、${\txt{7}}$V,传输效率为${\ttext{52}}$至68%,具体取决于对准。考虑到控制器和门驱动器,端到端效率为${\text{39}}$至57%。进行了电磁和热模拟,以验证在植入物中的比吸收率(SAR)水平、磁场强度和热产生方面是否符合相关安全规定,线圈之间的间隔距离为${\text{8}}$至${\text{15}}$mm,横向错位为${-text{0}}$到$\text{15}$mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.40%
发文量
58
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信