Zhengguo Zhu;Guoteng Zhang;Zhongkai Sun;Teng Chen;Xuewen Rong;Anhuan Xie;Yibin Li
{"title":"Proprioceptive-Based Whole-Body Disturbance Rejection Control for Dynamic Motions in Legged Robots","authors":"Zhengguo Zhu;Guoteng Zhang;Zhongkai Sun;Teng Chen;Xuewen Rong;Anhuan Xie;Yibin Li","doi":"10.1109/LRA.2023.3322081","DOIUrl":null,"url":null,"abstract":"This letter presents a control framework for legged robots that enables self-perception and resistance to external disturbances. First, a novel proprioceptive-based disturbance estimator is proposed. Compared with other disturbance estimators, this estimator possesses notable advantages in terms of filtering foot-ground interaction noise and suppressing the accumulation of estimation errors. Additionally, our estimator is a fully proprioceptive-based estimator, eliminating the need for any exteroceptive devices or observers. Second, we present a hierarchical optimized whole-body controller (WBC), which takes into account the full body dynamics, the actuation limits, the external disturbances, and the interactive constraints. Finally, extensive experimental trials conducted on the point-foot biped robot BRAVER validate the capabilities of the proposed estimator and controller under various disturbance conditions.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"8 11","pages":"7703-7710"},"PeriodicalIF":4.6000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10271552/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This letter presents a control framework for legged robots that enables self-perception and resistance to external disturbances. First, a novel proprioceptive-based disturbance estimator is proposed. Compared with other disturbance estimators, this estimator possesses notable advantages in terms of filtering foot-ground interaction noise and suppressing the accumulation of estimation errors. Additionally, our estimator is a fully proprioceptive-based estimator, eliminating the need for any exteroceptive devices or observers. Second, we present a hierarchical optimized whole-body controller (WBC), which takes into account the full body dynamics, the actuation limits, the external disturbances, and the interactive constraints. Finally, extensive experimental trials conducted on the point-foot biped robot BRAVER validate the capabilities of the proposed estimator and controller under various disturbance conditions.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.