Integrative design of laser-induced graphene array with lithiophilic MnOx nanoparticles enables superior lithium metal batteries

IF 42.9 Q1 ELECTROCHEMISTRY
Hong Xiao , Yijuan Li , Ruiqi Chen , Tangchao Xie , Pan Xu , Hengji Zhu , Jialang He , Weitao Zheng , Shaoming Huang
{"title":"Integrative design of laser-induced graphene array with lithiophilic MnOx nanoparticles enables superior lithium metal batteries","authors":"Hong Xiao ,&nbsp;Yijuan Li ,&nbsp;Ruiqi Chen ,&nbsp;Tangchao Xie ,&nbsp;Pan Xu ,&nbsp;Hengji Zhu ,&nbsp;Jialang He ,&nbsp;Weitao Zheng ,&nbsp;Shaoming Huang","doi":"10.1016/j.esci.2023.100134","DOIUrl":null,"url":null,"abstract":"<div><p>The practical applications of lithium metal batteries are limited by uncontrolled dendrite growth during cycling. Herein, we propose a simple and scalable approach to stabilize lithium metal anodes using laser scribing technology to integratively design and construct a laser-induced graphene (LIG) with lithiophilic metal oxide nanoparticles. The porous LIG and lithiophilic MnO<sub>x</sub> nanoparticles effectively reduce the nucleation overpotential of Li and regulate uniform Li plating, while the array structure offers continuous and ultra-fast ion/electron transport channels, accelerating Li<sup>+</sup> transport kinetics at high rate and high capacity. Consequently, the Li@MnO<sub>x</sub>@LIG-a anode exhibits superior rate capability of up to 40 ​mA ​cm<sup>−2</sup> with low nucleation overpotential. It also can withstand ultra-high Li capacity to 20 mAh cm<sup>−2</sup> without dendrite growth and stably cycle for 3000 ​h with 100% depth of discharge at 40 ​mA ​cm<sup>−2</sup>. More importantly, this technology can be expanded to other metal oxides for various metal batteries.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 5","pages":"Article 100134"},"PeriodicalIF":42.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723000599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 5

Abstract

The practical applications of lithium metal batteries are limited by uncontrolled dendrite growth during cycling. Herein, we propose a simple and scalable approach to stabilize lithium metal anodes using laser scribing technology to integratively design and construct a laser-induced graphene (LIG) with lithiophilic metal oxide nanoparticles. The porous LIG and lithiophilic MnOx nanoparticles effectively reduce the nucleation overpotential of Li and regulate uniform Li plating, while the array structure offers continuous and ultra-fast ion/electron transport channels, accelerating Li+ transport kinetics at high rate and high capacity. Consequently, the Li@MnOx@LIG-a anode exhibits superior rate capability of up to 40 ​mA ​cm−2 with low nucleation overpotential. It also can withstand ultra-high Li capacity to 20 mAh cm−2 without dendrite growth and stably cycle for 3000 ​h with 100% depth of discharge at 40 ​mA ​cm−2. More importantly, this technology can be expanded to other metal oxides for various metal batteries.

Abstract Image

激光诱导石墨烯阵列与亲锂MnOx纳米颗粒的集成设计实现了卓越的锂金属电池
锂金属电池的实际应用受到循环过程中不受控制的枝晶生长的限制。在此,我们提出了一种简单且可扩展的方法来稳定锂金属阳极,使用激光划线技术集成设计和构建具有亲锂金属氧化物纳米颗粒的激光诱导石墨烯(LIG)。多孔LIG和亲锂MnOx纳米颗粒有效地降低了Li的成核过电位,并调节了均匀的Li镀层,而阵列结构提供了连续和超快的离子/电子传输通道,加速了高速率和高容量的Li+传输动力学。因此Li@MnOx@LIG-a阳极具有高达40的优异倍率性能​毫安​cm−2,成核过电位低。它还可以承受高达20 mAh cm−2的超高锂容量,而不会生长枝晶,并稳定循环3000次​h,放电深度为40%​毫安​cm−2。更重要的是,这项技术可以扩展到其他金属氧化物,用于各种金属电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信