Heterostructure engineering in electrode materials for sodium-ion batteries: Recent progress and perspectives

IF 42.9 Q1 ELECTROCHEMISTRY
Eric Gabriel , Chunrong Ma , Kincaid Graff , Angel Conrado , Dewen Hou , Hui Xiong
{"title":"Heterostructure engineering in electrode materials for sodium-ion batteries: Recent progress and perspectives","authors":"Eric Gabriel ,&nbsp;Chunrong Ma ,&nbsp;Kincaid Graff ,&nbsp;Angel Conrado ,&nbsp;Dewen Hou ,&nbsp;Hui Xiong","doi":"10.1016/j.esci.2023.100139","DOIUrl":null,"url":null,"abstract":"<div><p>Sodium-ion batteries (SIBs) have stepped into the spotlight as a promising alternative to lithium-ion batteries for large-scale energy storage systems. However, SIB electrode materials, in general, have inferior performance than their lithium counterparts because Na<sup>+</sup> is larger and heavier than Li<sup>+</sup>. Heterostructure engineering is a promising strategy to overcome this intrinsic limitation and achieve practical SIBs. We provide a brief review of recent progress in heterostructure engineering of electrode materials and research on how the phase interface influences Na<sup>+</sup> storage and transport properties. Efficient strategies for the design and fabrication of heterostructures (<em>in situ</em> methods) are discussed, with a focus on the heterostructure formation mechanism. The heterostructure's influence on Na<sup>+</sup> storage and transport properties arises primarily from local distortions of the structure and chemomechanical coupling at the phase interface, which may accelerate ion/electron diffusion, create additional active sites, and bolster structural stability. Finally, we offer our perspectives on the existing challenges, knowledge gaps, and opportunities for the advancement of heterostructure engineering as a means to develop practical, high-performance sodium-ion batteries.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 5","pages":"Article 100139"},"PeriodicalIF":42.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723000642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 8

Abstract

Sodium-ion batteries (SIBs) have stepped into the spotlight as a promising alternative to lithium-ion batteries for large-scale energy storage systems. However, SIB electrode materials, in general, have inferior performance than their lithium counterparts because Na+ is larger and heavier than Li+. Heterostructure engineering is a promising strategy to overcome this intrinsic limitation and achieve practical SIBs. We provide a brief review of recent progress in heterostructure engineering of electrode materials and research on how the phase interface influences Na+ storage and transport properties. Efficient strategies for the design and fabrication of heterostructures (in situ methods) are discussed, with a focus on the heterostructure formation mechanism. The heterostructure's influence on Na+ storage and transport properties arises primarily from local distortions of the structure and chemomechanical coupling at the phase interface, which may accelerate ion/electron diffusion, create additional active sites, and bolster structural stability. Finally, we offer our perspectives on the existing challenges, knowledge gaps, and opportunities for the advancement of heterostructure engineering as a means to develop practical, high-performance sodium-ion batteries.

Abstract Image

钠离子电池电极材料异质结构工程的最新进展与展望
钠离子电池(SIBs)作为大规模储能系统中锂离子电池的一种有前途的替代品,已成为人们关注的焦点。然而,一般来说,SIB电极材料的性能不如锂电极材料,因为Na+比Li+大且重。异质结构工程是一种很有前途的策略,可以克服这种内在的局限性,实现实用的SIBs。我们简要回顾了电极材料异质结构工程的最新进展,以及相界面如何影响Na+存储和传输特性的研究。讨论了异质结构设计和制造的有效策略(原位方法),重点是异质结构的形成机制。异质结构对Na+存储和传输特性的影响主要源于结构的局部畸变和相界面的化学机械耦合,这可能加速离子/电子扩散,产生额外的活性位点,并增强结构稳定性。最后,我们对异质结构工程作为开发实用、高性能钠离子电池的手段所面临的挑战、知识差距和机遇提出了看法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信