A Hamiltonian and geometric formulation of general Vlasov-Maxwell-type models

William Barham , Philip J. Morrison , Eric Sonnendrücker
{"title":"A Hamiltonian and geometric formulation of general Vlasov-Maxwell-type models","authors":"William Barham ,&nbsp;Philip J. Morrison ,&nbsp;Eric Sonnendrücker","doi":"10.1016/j.fpp.2023.100016","DOIUrl":null,"url":null,"abstract":"<div><p>Three geometric formulations of the Hamiltonian structure of the macroscopic Maxwell equations are given: one in terms of the double de Rham complex, one in terms of <span><math><msup><mi>L</mi><mn>2</mn></msup></math></span> duality, and one utilizing an abstract notion of duality. The final of these is used to express the geometric and Hamiltonian structure of kinetic theories in general media. The Poisson bracket so stated is explicitly metric free. Finally, as a special case, the Lorentz covariance of such kinetic theories is investigated. We obtain a Lorentz covariant kinetic theory coupled to nonlinear electrodynamics such as Born-Infeld or Euler-Heisenberg electrodynamics.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"5 ","pages":"Article 100016"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772828523000092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Three geometric formulations of the Hamiltonian structure of the macroscopic Maxwell equations are given: one in terms of the double de Rham complex, one in terms of L2 duality, and one utilizing an abstract notion of duality. The final of these is used to express the geometric and Hamiltonian structure of kinetic theories in general media. The Poisson bracket so stated is explicitly metric free. Finally, as a special case, the Lorentz covariance of such kinetic theories is investigated. We obtain a Lorentz covariant kinetic theory coupled to nonlinear electrodynamics such as Born-Infeld or Euler-Heisenberg electrodynamics.

一般Vlasov-Maxwell型模型的哈密顿量和几何公式
给出了宏观麦克斯韦方程组哈密顿结构的三个几何公式:一个用二重de Rham复形表示,一个用L2对偶表示,另一个用对偶的抽象概念表示。其中的最后一个用于表示一般介质中动力学理论的几何结构和哈密顿结构。如此表述的泊松括号是明确无度量的。最后,作为一个特例,研究了这类动力学理论的洛伦兹协方差。我们得到了一个洛伦兹协变动力学理论,耦合到非线性电动力学,如Born-Infeld或Euler Heisenberg电动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信