An investigation on failure behavior of semi-flexible composite mixture at different temperatures

Zijia Xiong , Minghui Gong , Jinxiang Hong , Lei Zhang
{"title":"An investigation on failure behavior of semi-flexible composite mixture at different temperatures","authors":"Zijia Xiong ,&nbsp;Minghui Gong ,&nbsp;Jinxiang Hong ,&nbsp;Lei Zhang","doi":"10.1016/j.jreng.2022.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>Semi-flexible composite mixture (SFCM) is a kind of pavement material formed by pouring cement-based grout material into a porous asphalt mixture with air voids from 20% to 30%. SFCM is widely used for its outstanding anti-rutting performance. Its mechanical performance is complicated due to its heterogeneity and interlocking structure. According to the present study, asphalt deforms at different temperatures, whereas cement-based grout has no similar characteristics. Rare research focuses on the temperature-based performance of SFCM. Therefore, the study was on the thermal performance of SFCM by seven open-graded asphalt mixture skeletons with different porosities and two types of grouts with early strength (ES) and high strength (HS). The test temperatures ranged from −10 ​°C to 60 ​°C. The mechanical investigation was performed using the semi-circular-bending (SCB) and beam bending tests. The strain sensor was used for analyzing the thermal performance of SFCM. The results show that the temperature significantly affected the SFCM's performance. The porosity was selected for three sections based on the trend of fracture energy (<em>G</em><sub>f</sub>) curves at 25 ​°C. The turning points were the porosity values of 20% and 26%. The initiation slope during elastic deformation increases with the porosity increase. This trend was more evident at intermediate temperature. The shrink strain of SFCM was lower than that of the usual asphalt mixture (AC). The thermal stress of the SFCM filled with HS (HS-SFCM) was higher than that of the SFCM filled with ES (ES-SFCM) at −10 ​°C. Moreover, the thermal failure characteristics of SFCM were influenced by porosity.</p></div>","PeriodicalId":100830,"journal":{"name":"Journal of Road Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Road Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2097049823000240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Semi-flexible composite mixture (SFCM) is a kind of pavement material formed by pouring cement-based grout material into a porous asphalt mixture with air voids from 20% to 30%. SFCM is widely used for its outstanding anti-rutting performance. Its mechanical performance is complicated due to its heterogeneity and interlocking structure. According to the present study, asphalt deforms at different temperatures, whereas cement-based grout has no similar characteristics. Rare research focuses on the temperature-based performance of SFCM. Therefore, the study was on the thermal performance of SFCM by seven open-graded asphalt mixture skeletons with different porosities and two types of grouts with early strength (ES) and high strength (HS). The test temperatures ranged from −10 ​°C to 60 ​°C. The mechanical investigation was performed using the semi-circular-bending (SCB) and beam bending tests. The strain sensor was used for analyzing the thermal performance of SFCM. The results show that the temperature significantly affected the SFCM's performance. The porosity was selected for three sections based on the trend of fracture energy (Gf) curves at 25 ​°C. The turning points were the porosity values of 20% and 26%. The initiation slope during elastic deformation increases with the porosity increase. This trend was more evident at intermediate temperature. The shrink strain of SFCM was lower than that of the usual asphalt mixture (AC). The thermal stress of the SFCM filled with HS (HS-SFCM) was higher than that of the SFCM filled with ES (ES-SFCM) at −10 ​°C. Moreover, the thermal failure characteristics of SFCM were influenced by porosity.

半柔性复合材料混合物在不同温度下的破坏行为研究
半柔性复合材料混合料(SFCM)是一种将水泥基灌浆材料倒入空隙率为20%至30%的多孔沥青混合料中形成的路面材料。SFCM因其优异的抗车辙性能而被广泛应用。由于其异质性和互锁结构,其力学性能复杂。根据目前的研究,沥青在不同的温度下会变形,而水泥基灌浆没有类似的特性。很少有研究关注SFCM基于温度的性能。因此,本研究采用七种不同孔隙率的开级配沥青混合料骨架和两种早期强度(ES)和高强度(HS)灌浆料对SFCM的热性能进行了研究。测试温度范围为−10​°C至60​°C。采用半圆形弯曲(SCB)和梁弯曲试验进行了力学研究。利用应变传感器对SFCM的热性能进行了分析。结果表明,温度对SFCM的性能有显著影响。根据25时的断裂能(Gf)曲线趋势,选择了三个剖面的孔隙度​°C。转折点是孔隙率分别为20%和26%。弹性变形过程中的起始斜率随着孔隙率的增加而增加。这种趋势在中等温度下更为明显。SFCM的收缩应变低于普通沥青混合料的收缩应变。在−10时,HS填充的SFCM(HS-SFCM)的热应力高于ES填充的SFCM(ES-SFCM)​°C。此外,孔隙率对SFCM的热失效特性也有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信