Junwen Lai , Jiangxu Li , Peitao Liu , Yan Sun , Xing-Qiu Chen
{"title":"First-principles study on the electronic structure of Pb10−xCux(PO4)6O (x = 0, 1)","authors":"Junwen Lai , Jiangxu Li , Peitao Liu , Yan Sun , Xing-Qiu Chen","doi":"10.1016/j.jmst.2023.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, Lee et al. claimed the experimental discovery of room-temperature ambient-pressure superconductivity in a Cu-doped lead-apatite (LK-99) (arXiv:2307.12008, arXiv:2307.12037). Remarkably, the claimed superconductivity can persist up to 400 K at ambient pressure. Despite the experimental implication, the electronic structure of LK-99 has not yet been studied. Here, we investigate the electronic structures of LK-99 and its parent compound using first-principles calculations, aiming to elucidate the doping effects of Cu. Our results reveal that the parent compound Pb<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>O is an insulator, while Cu doping induces an insulator-metal transition and thus volume contraction. The band structures of LK-99 around the Fermi level are featured by a half-filled flat band and a fully-occupied flat band. These two very flat bands arise from both the 2p orbitals of 1/4-occupied O atoms and the hybridization of the 3d orbitals of Cu with the 2p orbitals of its nearest-neighboring O atoms. Interestingly, we observe four van Hove singularities on these two flat bands. Furthermore, we show that the flat band structures can be tuned by including electronic correlation effects or by doping different elements. We find that among the considered doping elements (Ni, Cu, Zn, Ag, and Au), both Ni and Zn doping result in the gap opening, whereas Au exhibits doping effects more similar to Cu than Ag. Our work establishes a foundation for future studies to investigate the role of unique electronic structures of LK-99 in its claimed superconducting properties.</p></div>","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"171 ","pages":"Pages 66-70"},"PeriodicalIF":11.2000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1005030223006291","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 19
Abstract
Recently, Lee et al. claimed the experimental discovery of room-temperature ambient-pressure superconductivity in a Cu-doped lead-apatite (LK-99) (arXiv:2307.12008, arXiv:2307.12037). Remarkably, the claimed superconductivity can persist up to 400 K at ambient pressure. Despite the experimental implication, the electronic structure of LK-99 has not yet been studied. Here, we investigate the electronic structures of LK-99 and its parent compound using first-principles calculations, aiming to elucidate the doping effects of Cu. Our results reveal that the parent compound Pb10(PO4)6O is an insulator, while Cu doping induces an insulator-metal transition and thus volume contraction. The band structures of LK-99 around the Fermi level are featured by a half-filled flat band and a fully-occupied flat band. These two very flat bands arise from both the 2p orbitals of 1/4-occupied O atoms and the hybridization of the 3d orbitals of Cu with the 2p orbitals of its nearest-neighboring O atoms. Interestingly, we observe four van Hove singularities on these two flat bands. Furthermore, we show that the flat band structures can be tuned by including electronic correlation effects or by doping different elements. We find that among the considered doping elements (Ni, Cu, Zn, Ag, and Au), both Ni and Zn doping result in the gap opening, whereas Au exhibits doping effects more similar to Cu than Ag. Our work establishes a foundation for future studies to investigate the role of unique electronic structures of LK-99 in its claimed superconducting properties.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.