{"title":"Development of forecasting method of time variation of net solar output over wide area using grand data based neural network","authors":"Chikako Dozono, Shin-ichi Inage","doi":"10.1016/j.solcom.2023.100050","DOIUrl":null,"url":null,"abstract":"<div><p>This paper focuses on the short-term forecasting of the temporal variation in the net output of photovoltaic power generation across a wide area. Due to the unstable output fluctuations of photovoltaic power generation, thermal power generation is necessary. However, to handle unpredictable power fluctuations, thermal power often operates in a no-load standby mode, resulting in wasteful energy consumption. To address this issue, we have developed a novel prediction method that utilizes neural networks for short-term forecasting of the net output of photovoltaic power generation in a wide area. The key aspect of this method is the utilization of the distributed solar power generation itself as a sensor within the target area, enabling the use of BIG DATA derived from the sensor to predict future net output of solar power generation using a neural network. To expedite calculations, we have incorporated an autoencoder and a decoder. We applied this methodology to northern Kyushu and conducted thorough verification. Furthermore, we compared the persistent model with the smart persistent model and demonstrated their effectiveness as viable solutions.</p></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"7 ","pages":"Article 100050"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Compass","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772940023000188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on the short-term forecasting of the temporal variation in the net output of photovoltaic power generation across a wide area. Due to the unstable output fluctuations of photovoltaic power generation, thermal power generation is necessary. However, to handle unpredictable power fluctuations, thermal power often operates in a no-load standby mode, resulting in wasteful energy consumption. To address this issue, we have developed a novel prediction method that utilizes neural networks for short-term forecasting of the net output of photovoltaic power generation in a wide area. The key aspect of this method is the utilization of the distributed solar power generation itself as a sensor within the target area, enabling the use of BIG DATA derived from the sensor to predict future net output of solar power generation using a neural network. To expedite calculations, we have incorporated an autoencoder and a decoder. We applied this methodology to northern Kyushu and conducted thorough verification. Furthermore, we compared the persistent model with the smart persistent model and demonstrated their effectiveness as viable solutions.