{"title":"Voltage Reduced Self Refresh (VRSR) for optimized energy savings in DRAM Memories","authors":"Diyanesh Chinnakkonda , Venkata Kalyan Tavva , M.B. Srinivas","doi":"10.1016/j.memori.2023.100058","DOIUrl":null,"url":null,"abstract":"<div><p>Modern computing systems demand DRAMs with more capacity and bandwidth to keep pace with the onslaught of new data-intensive applications. Though DRAM scaling offers higher density devices to realize high memory capacity systems, energy consumption has become a key design limiter. This is owing to the fact that the memory sub-system continues to be responsible for a significant fraction of overall system energy. Self-refresh mode is one low power state that consumes the least DRAM energy, and this is an essential operation to avoid data loss. However, self-refresh energy also continues to grow with density scaling. This paper carries out a detailed study of reducing self-refresh energy by reducing the supply voltage. PARSEC benchmarks in Gem5 full-system mode are used to quantify the merit of self-refresh energy savings at reduced voltages for normal, reduced, and extended temperature ranges. The latency impacts of basic operations involved in self-refresh operation are evaluated using the 16 nm SPICE model. Possible limitations in extending the work to real hardware are also discussed. As a potential opportunity to motivate for future implementation, DRAM architectural changes, additional low power states and entry/exit flow to exercise reduced voltage operation in self-refresh mode are proposed. We present this new low power mode as Voltage Reduced Self-Refresh (VRSR) operation. Our simulation results show that there is a maximum of <span><math><mo>∼</mo></math></span>12.4% and an average of <span><math><mo>∼</mo></math></span>4% workload energy savings, with less than 0.7% performance loss across all benchmarks, for an aggressive voltage reduction of 150 mV.</p></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"4 ","pages":"Article 100058"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memories - Materials, Devices, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277306462300035X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Modern computing systems demand DRAMs with more capacity and bandwidth to keep pace with the onslaught of new data-intensive applications. Though DRAM scaling offers higher density devices to realize high memory capacity systems, energy consumption has become a key design limiter. This is owing to the fact that the memory sub-system continues to be responsible for a significant fraction of overall system energy. Self-refresh mode is one low power state that consumes the least DRAM energy, and this is an essential operation to avoid data loss. However, self-refresh energy also continues to grow with density scaling. This paper carries out a detailed study of reducing self-refresh energy by reducing the supply voltage. PARSEC benchmarks in Gem5 full-system mode are used to quantify the merit of self-refresh energy savings at reduced voltages for normal, reduced, and extended temperature ranges. The latency impacts of basic operations involved in self-refresh operation are evaluated using the 16 nm SPICE model. Possible limitations in extending the work to real hardware are also discussed. As a potential opportunity to motivate for future implementation, DRAM architectural changes, additional low power states and entry/exit flow to exercise reduced voltage operation in self-refresh mode are proposed. We present this new low power mode as Voltage Reduced Self-Refresh (VRSR) operation. Our simulation results show that there is a maximum of 12.4% and an average of 4% workload energy savings, with less than 0.7% performance loss across all benchmarks, for an aggressive voltage reduction of 150 mV.