On linear diameter perfect Lee codes with distance 6

IF 0.9 2区 数学 Q2 MATHEMATICS
Tao Zhang , Gennian Ge
{"title":"On linear diameter perfect Lee codes with distance 6","authors":"Tao Zhang ,&nbsp;Gennian Ge","doi":"10.1016/j.jcta.2023.105816","DOIUrl":null,"url":null,"abstract":"<div><p>In 1968, Golomb and Welch conjectured that there is no perfect Lee codes with radius <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span> and dimension <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>. A diameter perfect code is a natural generalization of the perfect code. In 2011, Etzion (2011) <span>[5]</span> proposed the following problem: Are there diameter perfect Lee (DPL, for short) codes with distance greater than four besides the <span><math><mi>D</mi><mi>P</mi><mi>L</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>6</mn><mo>)</mo></math></span> code? Later, Horak and AlBdaiwi (2012) <span>[12]</span> conjectured that there are no <span><math><mi>D</mi><mi>P</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>)</mo></math></span> codes for dimension <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> and distance <span><math><mi>d</mi><mo>&gt;</mo><mn>4</mn></math></span> except for <span><math><mo>(</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>3</mn><mo>,</mo><mn>6</mn><mo>)</mo></math></span>. In this paper, we give a counterexample to this conjecture. Moreover, we prove that for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, there is a linear <span><math><mi>D</mi><mi>P</mi><mi>L</mi><mo>(</mo><mi>n</mi><mo>,</mo><mn>6</mn><mo>)</mo></math></span> code if and only if <span><math><mi>n</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>11</mn></math></span>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"201 ","pages":"Article 105816"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316523000845","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In 1968, Golomb and Welch conjectured that there is no perfect Lee codes with radius r2 and dimension n3. A diameter perfect code is a natural generalization of the perfect code. In 2011, Etzion (2011) [5] proposed the following problem: Are there diameter perfect Lee (DPL, for short) codes with distance greater than four besides the DPL(3,6) code? Later, Horak and AlBdaiwi (2012) [12] conjectured that there are no DPL(n,d) codes for dimension n3 and distance d>4 except for (n,d)=(3,6). In this paper, we give a counterexample to this conjecture. Moreover, we prove that for n3, there is a linear DPL(n,6) code if and only if n=3,11.

关于距离为6的线性直径完美Lee码
1968年,Golomb和Welch猜想不存在半径r≥2、维数n≥3的完美李码。直径完美码是完美码的自然推广。2011年,Etzion(2011)[5]提出了以下问题:除了DPL(3,6)码之外,是否存在距离大于4的直径完美Lee(简称DPL)码?后来,Horak和AlBdaiwi(2012)[12]推测,对于维数n≥3和距离d>;4,除了(n,d)=(3,6)。在本文中,我们给出了一个反例。此外,我们证明了对于n≥3,存在线性DPL(n,6)码当且仅当n=3,11。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信