Data-driven assisted model specification for complex choice experiments data: Association rules learning and random forests for Participatory Value Evaluation experiments

IF 2.8 3区 经济学 Q1 ECONOMICS
Jose Ignacio Hernandez, Sander van Cranenburgh, Caspar Chorus, Niek Mouter
{"title":"Data-driven assisted model specification for complex choice experiments data: Association rules learning and random forests for Participatory Value Evaluation experiments","authors":"Jose Ignacio Hernandez,&nbsp;Sander van Cranenburgh,&nbsp;Caspar Chorus,&nbsp;Niek Mouter","doi":"10.1016/j.jocm.2022.100397","DOIUrl":null,"url":null,"abstract":"<div><p>We propose three procedures based on association rules (AR) learning and random forests (RF) to support the specification of a portfolio choice model applied in data from complex choice experiment data, specifically a Participatory Value Evaluation (PVE) choice experiment. In a PVE choice experiment, respondents choose a combination of alternatives, subject to a resource constraint. We combine a methodological-iterative (MI) procedure with AR learning and RF models to support the specification of parameters of a portfolio choice model. Additionally, we use RF model predictions to contrast the validity of the behavioural assumptions of different specifications of the portfolio choice model. We use data of a PVE choice experiment conducted to elicit the preferences of Dutch citizens for lifting COVID-19 measures. Our results show model fit and interpretation improvements in the portfolio choice model, compared with conventional model specifications. Additionally, we provide guidelines on the use of outcomes from AR learning and RF models from a choice modelling perspective.</p></div>","PeriodicalId":46863,"journal":{"name":"Journal of Choice Modelling","volume":"46 ","pages":"Article 100397"},"PeriodicalIF":2.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Choice Modelling","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755534522000549","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose three procedures based on association rules (AR) learning and random forests (RF) to support the specification of a portfolio choice model applied in data from complex choice experiment data, specifically a Participatory Value Evaluation (PVE) choice experiment. In a PVE choice experiment, respondents choose a combination of alternatives, subject to a resource constraint. We combine a methodological-iterative (MI) procedure with AR learning and RF models to support the specification of parameters of a portfolio choice model. Additionally, we use RF model predictions to contrast the validity of the behavioural assumptions of different specifications of the portfolio choice model. We use data of a PVE choice experiment conducted to elicit the preferences of Dutch citizens for lifting COVID-19 measures. Our results show model fit and interpretation improvements in the portfolio choice model, compared with conventional model specifications. Additionally, we provide guidelines on the use of outcomes from AR learning and RF models from a choice modelling perspective.

复杂选择实验数据驱动的辅助模型规范:参与式价值评估实验的关联规则学习和随机森林
我们提出了三个基于关联规则(AR)学习和随机森林(RF)的程序,以支持在复杂选择实验数据中应用的投资组合选择模型的规范,特别是参与式价值评估(PVE)选择实验。在PVE选择实验中,受试者在资源限制的情况下选择多种选择。我们将方法迭代(MI)过程与AR学习和RF模型相结合,以支持投资组合选择模型的参数规范。此外,我们使用RF模型预测来对比投资组合选择模型的不同规范的行为假设的有效性。我们使用PVE选择实验的数据来引出荷兰公民对解除新冠肺炎措施的偏好。我们的结果表明,与传统的模型规范相比,投资组合选择模型的模型拟合和解释有所改进。此外,我们从选择建模的角度提供了AR学习和RF模型结果的使用指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信