Heterogeneity in choice experiment data: A Bayesian investigation

IF 2.8 3区 经济学 Q1 ECONOMICS
Lendie Follett , Brian Vander Naald
{"title":"Heterogeneity in choice experiment data: A Bayesian investigation","authors":"Lendie Follett ,&nbsp;Brian Vander Naald","doi":"10.1016/j.jocm.2022.100398","DOIUrl":null,"url":null,"abstract":"<div><p>Discrete mixture (DM) models recognize the presence of heterogeneity across individuals in a given population. In the context of a public land use discrete choice experiment, we use DM models to allow for respondent behavior to probabilistically mix over multiple competing process heuristics. We pairwise combine the Random Utility Model (RUM), Contextual Concavity Model (CCM), and Random Regret Minimization (RRM) heuristic into three DM models, in which the probability of an individual adhering to a particular heuristic is modeled as a function of sociodemographic characteristics. We present a comprehensive Bayesian analysis for which we explicitly describe prior selection, inferential procedures, and model comparison metrics. We use a fully Bayesian information criterion to rank the models. We find evidence that responses are best modeled using random regret. After accounting for preference heterogeneity, the DM models estimate two latent groups of decision makers. For the DM models, we develop a novel algorithm to calculate posterior-weighted willingness to pay estimates for improvements in different public park amenities in Polk County, Iowa.</p></div>","PeriodicalId":46863,"journal":{"name":"Journal of Choice Modelling","volume":"46 ","pages":"Article 100398"},"PeriodicalIF":2.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Choice Modelling","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755534522000550","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

Abstract

Discrete mixture (DM) models recognize the presence of heterogeneity across individuals in a given population. In the context of a public land use discrete choice experiment, we use DM models to allow for respondent behavior to probabilistically mix over multiple competing process heuristics. We pairwise combine the Random Utility Model (RUM), Contextual Concavity Model (CCM), and Random Regret Minimization (RRM) heuristic into three DM models, in which the probability of an individual adhering to a particular heuristic is modeled as a function of sociodemographic characteristics. We present a comprehensive Bayesian analysis for which we explicitly describe prior selection, inferential procedures, and model comparison metrics. We use a fully Bayesian information criterion to rank the models. We find evidence that responses are best modeled using random regret. After accounting for preference heterogeneity, the DM models estimate two latent groups of decision makers. For the DM models, we develop a novel algorithm to calculate posterior-weighted willingness to pay estimates for improvements in different public park amenities in Polk County, Iowa.

选择实验数据的异质性:贝叶斯研究
离散混合(DM)模型可以识别给定人群中个体之间的异质性。在公共土地使用离散选择实验的背景下,我们使用DM模型来允许受访者的行为在多个竞争过程启发式中进行概率混合。我们将随机效用模型(RUM)、上下文凹形模型(CCM)和随机回归最小化(RRM)启发式算法成对组合成三个DM模型,其中个体遵守特定启发式算法的概率被建模为社会人口统计特征的函数。我们提出了一个全面的贝叶斯分析,明确描述了先验选择、推理过程和模型比较指标。我们使用完全贝叶斯信息标准来对模型进行排序。我们发现有证据表明,反应最好使用随机后悔来建模。在考虑偏好异质性后,DM模型估计了两组潜在的决策者。对于DM模型,我们开发了一种新的算法来计算爱荷华州波尔克县不同公共公园设施改善的后验加权支付意愿估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信