{"title":"On the emergence of geospatial cloud-based platforms for disaster risk management: A global scientometric review of google earth engine applications","authors":"Mirza Waleed , Muhammad Sajjad","doi":"10.1016/j.ijdrr.2023.104056","DOIUrl":null,"url":null,"abstract":"<div><p>With the global upsurge in climatic extremes, disasters are causing significant damages. While disaster risk management (DRM) is a serious global challenge, governments, stakeholders, and practitioners among many other actors seek advanced solutions to reduce disaster-related costs. Recently, Google Earth Engine (GEE), a cloud platform used for planetary-scale geospatial analysis using big-data, has gained popularity due to its applications in various fields. While the availability of free satellite data has facilitated long-term spatial-temporal trends and patterns identification, cloud computing emerged as a reputable tool in geo-big data analyses. Yet nearly after ∼15 years of its launch, the impact of such cloud-computing platform on DRM (risk assessment, monitoring, and planning) has not been carefully explored. Hence, a systematic review<span> regarding the current state and trends in GEE applications to DRM is needed, which could provide the community with the bigger picture of the subject matter. Therefore, this study aims to investigate the advancement in DRM with GEE being the primary platform used. For this, 547 peer-reviewed studies published in 208 different journals during 2010–2022 were assessed. The current spectrum of GEE applications is dominated by floods, drought, and wildfires. For data type, most of the studies used optical data (Landsat and Sentinel-2). In terms of geographical distribution, China, USA, and India dominate with highest articles published. Within this research domain, three emerging research themes (floods, forest fire, and classification) are observed. Our findings signify the emergence of GEE applications in DRM, which will continue making substantive progress on DRM-related multi-scale challenges.</span></p></div>","PeriodicalId":13915,"journal":{"name":"International journal of disaster risk reduction","volume":"97 ","pages":"Article 104056"},"PeriodicalIF":4.2000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of disaster risk reduction","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212420923005368","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the global upsurge in climatic extremes, disasters are causing significant damages. While disaster risk management (DRM) is a serious global challenge, governments, stakeholders, and practitioners among many other actors seek advanced solutions to reduce disaster-related costs. Recently, Google Earth Engine (GEE), a cloud platform used for planetary-scale geospatial analysis using big-data, has gained popularity due to its applications in various fields. While the availability of free satellite data has facilitated long-term spatial-temporal trends and patterns identification, cloud computing emerged as a reputable tool in geo-big data analyses. Yet nearly after ∼15 years of its launch, the impact of such cloud-computing platform on DRM (risk assessment, monitoring, and planning) has not been carefully explored. Hence, a systematic review regarding the current state and trends in GEE applications to DRM is needed, which could provide the community with the bigger picture of the subject matter. Therefore, this study aims to investigate the advancement in DRM with GEE being the primary platform used. For this, 547 peer-reviewed studies published in 208 different journals during 2010–2022 were assessed. The current spectrum of GEE applications is dominated by floods, drought, and wildfires. For data type, most of the studies used optical data (Landsat and Sentinel-2). In terms of geographical distribution, China, USA, and India dominate with highest articles published. Within this research domain, three emerging research themes (floods, forest fire, and classification) are observed. Our findings signify the emergence of GEE applications in DRM, which will continue making substantive progress on DRM-related multi-scale challenges.
期刊介绍:
The International Journal of Disaster Risk Reduction (IJDRR) is the journal for researchers, policymakers and practitioners across diverse disciplines: earth sciences and their implications; environmental sciences; engineering; urban studies; geography; and the social sciences. IJDRR publishes fundamental and applied research, critical reviews, policy papers and case studies with a particular focus on multi-disciplinary research that aims to reduce the impact of natural, technological, social and intentional disasters. IJDRR stimulates exchange of ideas and knowledge transfer on disaster research, mitigation, adaptation, prevention and risk reduction at all geographical scales: local, national and international.
Key topics:-
-multifaceted disaster and cascading disasters
-the development of disaster risk reduction strategies and techniques
-discussion and development of effective warning and educational systems for risk management at all levels
-disasters associated with climate change
-vulnerability analysis and vulnerability trends
-emerging risks
-resilience against disasters.
The journal particularly encourages papers that approach risk from a multi-disciplinary perspective.