{"title":"Nanotechnology as a powerful tool in plant sciences: Recent developments, challenges and perspectives","authors":"Avnesh Kumari , Varnika Rana , Sudesh Kumar Yadav , Vinay Kumar","doi":"10.1016/j.plana.2023.100046","DOIUrl":null,"url":null,"abstract":"<div><p>In today's global climate emergency, agricultural practices are becoming increasingly unsustainable. There are a number of alarming issues that require immediate action, including soil erosion, excessive use of natural resources, biodiversity loss, and an explosion of population. Although agriculture is heavily modernized, with traditional approaches, it is not possible to meet these challenges due to different landscapes, high nutrition demand, and a lack of technology. Aside from adversely affecting agriculture, chemical use has also resulted in serious health issues and undesirable effects on the ecosystem. As a result, nanotechnology will play a significant role in delivering a well-organized, sustainable agricultural industry by reducing chemicals and addressing existing problems. A quick disease diagnosis, improved plant nutrient absorption, and increased plant capability to absorb nutrients can be achieved by nanotechnology in the food and agriculture industries. Agricultural plants can be protected from insects and pests by nanotechnology acting as sensors to monitor soil and water quality. Despite their potential, researchers have been unable to understand how these compounds operate, since NPs either enhance growth or cause cytotoxicity depending on how much concentration is applied. In this article, we present the most promising nanoparticles used in abiotic stress management and gene editing of plants, as well as novel nanobionic approaches for improving plant functions and organelles.</p></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"5 ","pages":"Article 100046"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Nano Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773111123000232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In today's global climate emergency, agricultural practices are becoming increasingly unsustainable. There are a number of alarming issues that require immediate action, including soil erosion, excessive use of natural resources, biodiversity loss, and an explosion of population. Although agriculture is heavily modernized, with traditional approaches, it is not possible to meet these challenges due to different landscapes, high nutrition demand, and a lack of technology. Aside from adversely affecting agriculture, chemical use has also resulted in serious health issues and undesirable effects on the ecosystem. As a result, nanotechnology will play a significant role in delivering a well-organized, sustainable agricultural industry by reducing chemicals and addressing existing problems. A quick disease diagnosis, improved plant nutrient absorption, and increased plant capability to absorb nutrients can be achieved by nanotechnology in the food and agriculture industries. Agricultural plants can be protected from insects and pests by nanotechnology acting as sensors to monitor soil and water quality. Despite their potential, researchers have been unable to understand how these compounds operate, since NPs either enhance growth or cause cytotoxicity depending on how much concentration is applied. In this article, we present the most promising nanoparticles used in abiotic stress management and gene editing of plants, as well as novel nanobionic approaches for improving plant functions and organelles.