Early age reaction of slag in composite cement: Impact of sulphates and calcite

Sam Adu-Amankwah , Leon Black , Liu Xianfeng , Pengkun Hou , Maciej Zajac
{"title":"Early age reaction of slag in composite cement: Impact of sulphates and calcite","authors":"Sam Adu-Amankwah ,&nbsp;Leon Black ,&nbsp;Liu Xianfeng ,&nbsp;Pengkun Hou ,&nbsp;Maciej Zajac","doi":"10.1016/j.cement.2023.100085","DOIUrl":null,"url":null,"abstract":"<div><p>Ground granulated blast furnace slag (GGBS) is an important supplementary cementitious material (SCM) for producing low carbon and durable concrete. There are however questions around the early age reactivity of GGBS and the factors that influence this. To elucidate the fundamental mechanisms controlling the early age reactivity and particularly the influence of anionic species, simplified systems comprising GGBS and calcium hydroxide were examined in the presence of limestone, anhydrite, or both at 4:1 SCM-to-activator ratio. Limestone and GGBS were considered as SCMs, but calcium hydroxide and anhydrite were considered as activators. Multiple techniques, including isothermal calorimetry, thermogravimetry, X-ray diffraction, electron microscopy, mass balance calculation and mercury intrusion porosimetry were used to study hydration and microstructure. The results show that GGBS hydration commences immediately in the alkaline media provided by calcium hydroxide. Sulphates and limestone influence hydration through reactions with aluminates to form ettringite and carboaluminates, but prevalence of macro-capillary pores in sulphate containing binders sustains diffusion-controlled hydration. Consequently, optimization of the alumina to sulphate and carbonate ratios is essential for exploiting the pore solution and space filling effects in composite cements.</p></div>","PeriodicalId":100225,"journal":{"name":"CEMENT","volume":"14 ","pages":"Article 100085"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEMENT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666549223000312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ground granulated blast furnace slag (GGBS) is an important supplementary cementitious material (SCM) for producing low carbon and durable concrete. There are however questions around the early age reactivity of GGBS and the factors that influence this. To elucidate the fundamental mechanisms controlling the early age reactivity and particularly the influence of anionic species, simplified systems comprising GGBS and calcium hydroxide were examined in the presence of limestone, anhydrite, or both at 4:1 SCM-to-activator ratio. Limestone and GGBS were considered as SCMs, but calcium hydroxide and anhydrite were considered as activators. Multiple techniques, including isothermal calorimetry, thermogravimetry, X-ray diffraction, electron microscopy, mass balance calculation and mercury intrusion porosimetry were used to study hydration and microstructure. The results show that GGBS hydration commences immediately in the alkaline media provided by calcium hydroxide. Sulphates and limestone influence hydration through reactions with aluminates to form ettringite and carboaluminates, but prevalence of macro-capillary pores in sulphate containing binders sustains diffusion-controlled hydration. Consequently, optimization of the alumina to sulphate and carbonate ratios is essential for exploiting the pore solution and space filling effects in composite cements.

矿渣在复合水泥中的早期反应:硫酸盐和方解石的影响
矿渣微粉是生产低碳耐久混凝土的重要辅助胶凝材料。然而,GGBS的早期反应性以及影响这一点的因素存在疑问。为了阐明控制早期反应性的基本机制,特别是阴离子物种的影响,在石灰石、硬石膏或两者都存在的情况下,以4:1的SCM与活化剂的比例检查了包括GGBS和氢氧化钙的简化系统。石灰石和GGBS被认为是SCMs,但氢氧化钙和硬石膏被认为是活化剂。采用等温量热法、热重分析法、X射线衍射法、电子显微镜、质量平衡计算法和压汞孔隙率法等多种技术对水化和微观结构进行了研究。结果表明,GGBS在氢氧化钙提供的碱性介质中立即开始水合。硫酸盐和石灰石通过与铝酸盐反应形成钙矾石和碳铝酸盐来影响水合作用,但含硫酸盐粘合剂中大毛细管孔的普遍存在维持了扩散控制的水合作用。因此,优化氧化铝与硫酸盐和碳酸盐的比例对于开发复合水泥中的孔隙溶液和空间填充效应至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信