Induced paths in graphs without anticomplete cycles

IF 1.2 1区 数学 Q1 MATHEMATICS
Tung Nguyen , Alex Scott , Paul Seymour
{"title":"Induced paths in graphs without anticomplete cycles","authors":"Tung Nguyen ,&nbsp;Alex Scott ,&nbsp;Paul Seymour","doi":"10.1016/j.jctb.2023.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>Let us say a graph is <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span><em>-free</em>, where <span><math><mi>s</mi><mo>≥</mo><mn>1</mn></math></span> is an integer, if there do not exist <em>s</em> cycles of the graph that are pairwise vertex-disjoint and have no edges joining them. The structure of such graphs, even when <span><math><mi>s</mi><mo>=</mo><mn>2</mn></math></span>, is not well understood. For instance, until now we did not know how to test whether a graph is <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-free in polynomial time; and there was an open conjecture, due to Ngoc Khang Le, that <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-free graphs have only a polynomial number of induced paths.</p><p>In this paper we prove Le's conjecture; indeed, we will show that for all <span><math><mi>s</mi><mo>≥</mo><mn>1</mn></math></span>, there exists <span><math><mi>c</mi><mo>&gt;</mo><mn>0</mn></math></span> such that every <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>-free graph <em>G</em> has at most <span><math><mo>|</mo><mi>G</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>c</mi></mrow></msup></math></span> induced paths, where <span><math><mo>|</mo><mi>G</mi><mo>|</mo></math></span> is the number of vertices. This provides a poly-time algorithm to test if a graph is <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>-free, for all fixed <em>s</em>.</p><p>The proof has three parts. First, there is a short and beautiful proof, due to Le, that reduces the question to proving the same thing for graphs with no cycles of length four. Second, there is a recent result of Bonamy, Bonnet, Déprés, Esperet, Geniet, Hilaire, Thomassé and Wesolek, that in every <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>-free graph <em>G</em> with no cycle of length four, there is a set of vertices that intersects every cycle, with size logarithmic in <span><math><mo>|</mo><mi>G</mi><mo>|</mo></math></span>. And third, there is an argument that uses the result of Bonamy et al. to deduce the theorem. The last is the main content of this paper.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"164 ","pages":"Pages 321-339"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623000850","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let us say a graph is Os-free, where s1 is an integer, if there do not exist s cycles of the graph that are pairwise vertex-disjoint and have no edges joining them. The structure of such graphs, even when s=2, is not well understood. For instance, until now we did not know how to test whether a graph is O2-free in polynomial time; and there was an open conjecture, due to Ngoc Khang Le, that O2-free graphs have only a polynomial number of induced paths.

In this paper we prove Le's conjecture; indeed, we will show that for all s1, there exists c>0 such that every Os-free graph G has at most |G|c induced paths, where |G| is the number of vertices. This provides a poly-time algorithm to test if a graph is Os-free, for all fixed s.

The proof has three parts. First, there is a short and beautiful proof, due to Le, that reduces the question to proving the same thing for graphs with no cycles of length four. Second, there is a recent result of Bonamy, Bonnet, Déprés, Esperet, Geniet, Hilaire, Thomassé and Wesolek, that in every Os-free graph G with no cycle of length four, there is a set of vertices that intersects every cycle, with size logarithmic in |G|. And third, there is an argument that uses the result of Bonamy et al. to deduce the theorem. The last is the main content of this paper.

无反完备环图中的诱导路径
假设一个图是Os自由的,其中s≥1是一个整数,如果该图不存在成对顶点不相交且没有边连接它们的s环。这种图的结构,即使当s=2时,也不能很好地理解。例如,直到现在,我们还不知道如何测试一个图在多项式时间内是否无O2;由于Ngoc Khang Le,存在一个开放的猜想,即O2自由图只有多项式数量的诱导路径。本文证明了Le的猜想;事实上,我们将证明对于所有s≥1,存在c>;0,使得每个Os自由图G最多有|G|c个诱导路径,其中|G|是顶点的数量。这提供了一个多时间算法来测试一个图对于所有固定的s是否是无Os的。证明有三部分。首先,由于Le,有一个简短而美丽的证明,它将问题简化为对没有长度为4的循环的图证明同样的事情。其次,Bonamy、Bonnet、Déprés、Esperet、Geniet、Hilaire、Thomassé和Wesolek最近的一个结果是,在每个没有长度为4的循环的Os自由图G中,存在一组与每个循环相交的顶点,其大小在|G|中是对数的。第三,利用Bonamy等人的结果推导了该定理。最后是本文的主要内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信