Disjointness graphs of short polygonal chains

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
János Pach , Gábor Tardos , Géza Tóth
{"title":"Disjointness graphs of short polygonal chains","authors":"János Pach ,&nbsp;Gábor Tardos ,&nbsp;Géza Tóth","doi":"10.1016/j.jctb.2023.08.008","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>disjointness graph</em> of a set system is a graph whose vertices are the sets, two being connected by an edge if and only if they are disjoint. It is known that the disjointness graph <em>G</em> of any system of segments in the plane is <em>χ-bounded</em>, that is, its chromatic number <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is upper bounded by a function of its clique number <span><math><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>.</p><p>Here we show that this statement does not remain true for systems of polygonal chains of length 2. We also construct systems of polygonal chains of length 3 such that their disjointness graphs have arbitrarily large girth and chromatic number. In the opposite direction, we show that the class of disjointness graphs of (possibly self-intersecting) 2<em>-way infinite</em> polygonal chains of length 3 is <em>χ</em>-bounded: for every such graph <em>G</em>, we have <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><msup><mrow><mo>(</mo><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623000679","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The disjointness graph of a set system is a graph whose vertices are the sets, two being connected by an edge if and only if they are disjoint. It is known that the disjointness graph G of any system of segments in the plane is χ-bounded, that is, its chromatic number χ(G) is upper bounded by a function of its clique number ω(G).

Here we show that this statement does not remain true for systems of polygonal chains of length 2. We also construct systems of polygonal chains of length 3 such that their disjointness graphs have arbitrarily large girth and chromatic number. In the opposite direction, we show that the class of disjointness graphs of (possibly self-intersecting) 2-way infinite polygonal chains of length 3 is χ-bounded: for every such graph G, we have χ(G)(ω(G))3+ω(G).

多边形短链的不连续图
集合系统的不相交图是一个顶点是集合的图,两个顶点通过边连接,当且仅当它们不相交。已知平面上任意一个分段系统的不相交图G是χ-有界的,即其色数χ(G)是其团数ω(G)的函数的上界。我们还构造了长度为3的多边形链的系统,使得它们的不相交图具有任意大的周长和色数。在相反的方向上,我们证明了一类长度为3的(可能自相交的)双向无限多边形链的不相交图是χ-有界的:对于每一个这样的图G,我们都有χ(G)≤(ω(G))3+Ω(G)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信