Modeling and performance study of CZTS solar cell with novel cupric oxide (CuO) as a bilayer absorber

A. A. Md. Monzur-Ul-Akhir , Saiful Islam , Md. Touhidul Imam , Sharnali Islam , Tasnia Hossain , Mohammad Junaebur Rashid
{"title":"Modeling and performance study of CZTS solar cell with novel cupric oxide (CuO) as a bilayer absorber","authors":"A. A. Md. Monzur-Ul-Akhir ,&nbsp;Saiful Islam ,&nbsp;Md. Touhidul Imam ,&nbsp;Sharnali Islam ,&nbsp;Tasnia Hossain ,&nbsp;Mohammad Junaebur Rashid","doi":"10.1016/j.memori.2023.100083","DOIUrl":null,"url":null,"abstract":"<div><p>A Kesterite material like CZTS provides the steering to the researcher with their tunable bandgap and high optical coefficient above 10<sup>4</sup> cm<sup>−1</sup> for solar cells. These features make it a suitable material for a single junction solar cell increasing the acceptance as well. In this paper, comparative numerical simulations were performed on a regular base structure of CZTS absorber layer with a CdS buffer layer, a ZnO window layer, and a transparent n-ITO conducting layer with a proposed structure where CZTS absorber layer is replaced by a CZTS and CuO bi-layer using SCAPS-1D software to optimize the efficiency. In addition to that the thickness, defect densities and doping concentrations of the absorber layers and temperature were varied to observe the responses of open-circuit voltage (<em>V</em><sub>OC</sub>), short-circuit current (<em>J</em><sub>SC</sub>), fill factor (FF) and efficiency (<em>η</em>) of the solar cell. Among the three basic researchs on lost mechanism for kesterite materials, we have focused on improving the back contact interface recombination through an absorber bi-layer combination of CZTS and CuO resulting in increased V<sub>OC</sub>, Quantum efficiency and carrier generation efficiency approximately by 50 %, 8.94 %, and 34 % respectively, elevating the efficiency of the proposed structure to 19.92 %.</p></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"5 ","pages":"Article 100083"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memories - Materials, Devices, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773064623000609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Kesterite material like CZTS provides the steering to the researcher with their tunable bandgap and high optical coefficient above 104 cm−1 for solar cells. These features make it a suitable material for a single junction solar cell increasing the acceptance as well. In this paper, comparative numerical simulations were performed on a regular base structure of CZTS absorber layer with a CdS buffer layer, a ZnO window layer, and a transparent n-ITO conducting layer with a proposed structure where CZTS absorber layer is replaced by a CZTS and CuO bi-layer using SCAPS-1D software to optimize the efficiency. In addition to that the thickness, defect densities and doping concentrations of the absorber layers and temperature were varied to observe the responses of open-circuit voltage (VOC), short-circuit current (JSC), fill factor (FF) and efficiency (η) of the solar cell. Among the three basic researchs on lost mechanism for kesterite materials, we have focused on improving the back contact interface recombination through an absorber bi-layer combination of CZTS and CuO resulting in increased VOC, Quantum efficiency and carrier generation efficiency approximately by 50 %, 8.94 %, and 34 % respectively, elevating the efficiency of the proposed structure to 19.92 %.

新型氧化铜(CuO)双层吸收器CZTS太阳能电池的建模与性能研究
像CZTS这样的Kesterite材料以其可调的带隙和超过104 cm−1的太阳能电池高光学系数为研究人员提供了指导。这些特征使其成为单结太阳能电池的合适材料,也提高了接受度。在本文中,使用SCAPS-1D软件对具有CdS缓冲层、ZnO窗口层和透明n-ITO导电层的CZTS吸收层的规则基底结构进行了比较数值模拟,以优化效率。此外,改变吸收层的厚度、缺陷密度和掺杂浓度以及温度,以观察太阳能电池的开路电压(VOC)、短路电流(JSC)、填充因子(FF)和效率(η)的响应。在关于钾橄榄石材料损失机理的三项基础研究中,我们专注于通过CZTS和CuO的吸收双层组合来改善背接触界面复合,从而使VOC、量子效率和载流子产生效率分别提高约50%、8.94%和34%,将所提出的结构的效率提高到19.92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信