Nathalie Barbosa Reis Monteiro , José Machado Moita Neto , Elaine Aparecida da Silva
{"title":"Environmental assessment in concrete pole industries","authors":"Nathalie Barbosa Reis Monteiro , José Machado Moita Neto , Elaine Aparecida da Silva","doi":"10.1016/j.cement.2023.100076","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Companies that manufacture poles generate several negative environmental impacts, whose extent needs to be assessed to find ways to mitigate them.</p></div><div><h3>Methods</h3><p>In this research, Life Cycle Assessment (LCA) was used as a methodology to measure the potential environmental impacts throughout the poles' life cycle. Primary data (amount of cement, gravel, sand, steel rebars, energy, water) were collected from industries located in Teresina, Piauí, Brazil, and information from the Ecoinvent 3.7.1 database (transport, solid waste, liquid effluents, particulate matter) was used.</p></div><div><h3>Results and discussion</h3><p>The literature addresses pole production from a different perspective, making this study relevant to disseminate the life cycle thinking in concrete pole production. However, the literature points to a correlation trend for ecotoxicity and human toxicity indicators, as well as the results found in this research. Waste disposal stands out as an important source of impact for these industries, confirming the necessity of efficient management of these materials at the end of their lifespan and during the production process. The scenario analysis showed that is possible to reduce the potential impacts of these industries.</p></div><div><h3>Conclusion</h3><p>The reuse of waste within the industry itself is feasible (using a shredder for this purpose) and can contribute to decreasing the extraction of natural deposits in various production processes related to the poles' life cycle and reducing their accumulation in the environment. The use of inputs from closer suppliers is a strategy that contributes to mitigating the potential impact of gaseous emissions, reducing the impact that generates global warming and climate change. In addition, other papers show viable alternatives in different scenarios, based on complex laboratory studies. Nevertheless, his approach shows how impacts can be mitigated with the adoption of simple actions such as the reuse of effluents and residues from these industries. It is possible to redefine the production process through a scenario close to the ideal, bringing environmental sustainability to the sector.</p></div>","PeriodicalId":100225,"journal":{"name":"CEMENT","volume":"13 ","pages":"Article 100076"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEMENT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666549223000221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Companies that manufacture poles generate several negative environmental impacts, whose extent needs to be assessed to find ways to mitigate them.
Methods
In this research, Life Cycle Assessment (LCA) was used as a methodology to measure the potential environmental impacts throughout the poles' life cycle. Primary data (amount of cement, gravel, sand, steel rebars, energy, water) were collected from industries located in Teresina, Piauí, Brazil, and information from the Ecoinvent 3.7.1 database (transport, solid waste, liquid effluents, particulate matter) was used.
Results and discussion
The literature addresses pole production from a different perspective, making this study relevant to disseminate the life cycle thinking in concrete pole production. However, the literature points to a correlation trend for ecotoxicity and human toxicity indicators, as well as the results found in this research. Waste disposal stands out as an important source of impact for these industries, confirming the necessity of efficient management of these materials at the end of their lifespan and during the production process. The scenario analysis showed that is possible to reduce the potential impacts of these industries.
Conclusion
The reuse of waste within the industry itself is feasible (using a shredder for this purpose) and can contribute to decreasing the extraction of natural deposits in various production processes related to the poles' life cycle and reducing their accumulation in the environment. The use of inputs from closer suppliers is a strategy that contributes to mitigating the potential impact of gaseous emissions, reducing the impact that generates global warming and climate change. In addition, other papers show viable alternatives in different scenarios, based on complex laboratory studies. Nevertheless, his approach shows how impacts can be mitigated with the adoption of simple actions such as the reuse of effluents and residues from these industries. It is possible to redefine the production process through a scenario close to the ideal, bringing environmental sustainability to the sector.