Recent progress in transition-metal-oxide-based electrocatalysts for the oxygen evolution reaction in natural seawater splitting: A critical review

IF 42.9 Q1 ELECTROCHEMISTRY
Meng Chen , Nutthaphak Kitiphatpiboon , Changrui Feng , Abuliti Abudula , Yufei Ma , Guoqing Guan
{"title":"Recent progress in transition-metal-oxide-based electrocatalysts for the oxygen evolution reaction in natural seawater splitting: A critical review","authors":"Meng Chen ,&nbsp;Nutthaphak Kitiphatpiboon ,&nbsp;Changrui Feng ,&nbsp;Abuliti Abudula ,&nbsp;Yufei Ma ,&nbsp;Guoqing Guan","doi":"10.1016/j.esci.2023.100111","DOIUrl":null,"url":null,"abstract":"<div><p>Direct electrolytic splitting of seawater for the production of H<sub>2</sub> using ocean energy is a promising technology that can help achieve carbon neutrality. However, owing to the high concentrations of chlorine ions in seawater, the chlorine evolution reaction always competes with the oxygen evolution reaction (OER) at the anode, and chloride corrosion occurs on both the anode and cathode. Thus, effective electrocatalysts with high selectivity toward the OER and excellent resistance to chloride corrosion should be developed. In this critical review, we focus on the prospects of state-of-the-art metal-oxide electrocatalysts, including noble metal oxides, non-noble metal oxides and their compounds, and spinel- and perovskite-type oxides, for seawater splitting. We elucidate their chemical properties, excellent OER selectivity, outstanding anti-chlorine-corrosion performance, and reaction mechanisms. In particular, we review metal oxides that operate at high current densities, near industrial application levels, based on special catalyst design strategies.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 2","pages":"Article 100111"},"PeriodicalIF":42.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723000290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 19

Abstract

Direct electrolytic splitting of seawater for the production of H2 using ocean energy is a promising technology that can help achieve carbon neutrality. However, owing to the high concentrations of chlorine ions in seawater, the chlorine evolution reaction always competes with the oxygen evolution reaction (OER) at the anode, and chloride corrosion occurs on both the anode and cathode. Thus, effective electrocatalysts with high selectivity toward the OER and excellent resistance to chloride corrosion should be developed. In this critical review, we focus on the prospects of state-of-the-art metal-oxide electrocatalysts, including noble metal oxides, non-noble metal oxides and their compounds, and spinel- and perovskite-type oxides, for seawater splitting. We elucidate their chemical properties, excellent OER selectivity, outstanding anti-chlorine-corrosion performance, and reaction mechanisms. In particular, we review metal oxides that operate at high current densities, near industrial application levels, based on special catalyst design strategies.

Abstract Image

用于天然海水裂解析氧反应的过渡金属氧化物基电催化剂的最新进展:综述
利用海洋能源直接电解分离海水生产H2是一种很有前途的技术,有助于实现碳中和。然而,由于海水中氯离子浓度高,析氯反应总是与阳极的析氧反应(OER)竞争,阳极和阴极都会发生氯腐蚀。因此,应该开发对OER具有高选择性和优异耐氯化物腐蚀性的有效电催化剂。在这篇关键综述中,我们重点关注最先进的金属氧化物电催化剂的前景,包括贵金属氧化物、非贵金属氧化物及其化合物,以及用于海水分解的尖晶石和钙钛矿型氧化物。我们阐明了它们的化学性质、优异的OER选择性、优异的抗氯腐蚀性能和反应机理。特别是,我们回顾了基于特殊催化剂设计策略在高电流密度、接近工业应用水平下运行的金属氧化物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信