Hybrid working mechanism enables highly reversible Zn electrodes

IF 42.9 Q1 ELECTROCHEMISTRY
Libei Yuan , Junnan Hao , Bernt Johannessen , Chao Ye , Fuhua Yang , Chao Wu , Shi-Xue Dou , Hua-Kun Liu , Shi-Zhang Qiao
{"title":"Hybrid working mechanism enables highly reversible Zn electrodes","authors":"Libei Yuan ,&nbsp;Junnan Hao ,&nbsp;Bernt Johannessen ,&nbsp;Chao Ye ,&nbsp;Fuhua Yang ,&nbsp;Chao Wu ,&nbsp;Shi-Xue Dou ,&nbsp;Hua-Kun Liu ,&nbsp;Shi-Zhang Qiao","doi":"10.1016/j.esci.2023.100096","DOIUrl":null,"url":null,"abstract":"<div><p>Zn dendrite growth and water-related side reactions have been criticized to hinder actual applications of aqueous Zn-ion batteries. To address these issues, a series of Zn interfacial modifications of building solid/electrolyte interphase (SEI) and nucleation layers have been widely proposed, however, their effectiveness remains debatable. Here, we report a boron nitride (BN)/Nafion layer on the Zn surface to efficiently solve Zn problems through combining the hybrid working mechanisms of SEI and nucleation layers. In our protective layer, Nafion exhibits the SEI mechanism by blocking water from the Zn surface and providing abundant channels for rapid Zn<sup>2+</sup> transmission, whilst BN nanosheets induce Zn deposition underneath with a preferred (002) orientation. Accordingly, dendrite-free and side-reaction-free Zn electrode with (002) deposition under the protective layer is realized for the first time, as reflected by its high reversibility with average Coulombic efficiency of 99.2% for &gt; 3000 ​h. The protected Zn electrode also shows excellent performance in full cells when coupling with polyaniline cathode under the strict condition of lean electrolyte addition. This work highlights insights for designing highly reversible metal electrodes towards practical applications.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 2","pages":"Article 100096"},"PeriodicalIF":42.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266714172300006X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 6

Abstract

Zn dendrite growth and water-related side reactions have been criticized to hinder actual applications of aqueous Zn-ion batteries. To address these issues, a series of Zn interfacial modifications of building solid/electrolyte interphase (SEI) and nucleation layers have been widely proposed, however, their effectiveness remains debatable. Here, we report a boron nitride (BN)/Nafion layer on the Zn surface to efficiently solve Zn problems through combining the hybrid working mechanisms of SEI and nucleation layers. In our protective layer, Nafion exhibits the SEI mechanism by blocking water from the Zn surface and providing abundant channels for rapid Zn2+ transmission, whilst BN nanosheets induce Zn deposition underneath with a preferred (002) orientation. Accordingly, dendrite-free and side-reaction-free Zn electrode with (002) deposition under the protective layer is realized for the first time, as reflected by its high reversibility with average Coulombic efficiency of 99.2% for > 3000 ​h. The protected Zn electrode also shows excellent performance in full cells when coupling with polyaniline cathode under the strict condition of lean electrolyte addition. This work highlights insights for designing highly reversible metal electrodes towards practical applications.

Abstract Image

混合工作机制可实现高度可逆的锌电极
锌枝晶生长和与水有关的副反应一直被批评为阻碍水性锌离子电池的实际应用。为了解决这些问题,人们广泛提出了一系列对建筑固体/电解质界面(SEI)和成核层进行Zn界面改性的方法,但其有效性仍存在争议。在这里,我们报道了在Zn表面上的氮化硼(BN)/Nafion层,通过结合SEI和成核层的混合工作机制来有效地解决Zn问题。在我们的保护层中,Nafion通过阻挡Zn表面的水并为Zn2+的快速传输提供丰富的通道来表现出SEI机制,而BN纳米片以优选的(002)取向在下面诱导Zn沉积。因此,首次实现了在保护层下具有(002)沉积的无枝晶和无副反应的Zn电极,如其在>;3000​h.在添加贫电解质的严格条件下,当与聚苯胺阴极偶联时,受保护的Zn电极在全电池中也表现出优异的性能。这项工作突出了设计面向实际应用的高度可逆金属电极的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信