Weighted Lp Markov factors with doubling weights on the ball

IF 0.9 3区 数学 Q2 MATHEMATICS
Jiansong Li , Heping Wang , Kai Wang
{"title":"Weighted Lp Markov factors with doubling weights on the ball","authors":"Jiansong Li ,&nbsp;Heping Wang ,&nbsp;Kai Wang","doi":"10.1016/j.jat.2023.105939","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>w</mi></mrow></msub><mo>,</mo><mspace></mspace><mn>1</mn><mo>≤</mo><mi>p</mi><mo>&lt;</mo><mi>∞</mi><mo>,</mo></mrow></math></span> denote the weighted <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> space of functions on the unit ball <span><math><msup><mrow><mi>B</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> with a doubling weight <span><math><mi>w</mi></math></span> on <span><math><msup><mrow><mi>B</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. The Markov factor for <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>w</mi></mrow></msub></math></span> of a polynomial <span><math><mi>P</mi></math></span> is defined by <span><math><mrow><mfrac><mrow><msub><mrow><mo>‖</mo><mspace></mspace><mrow><mo>|</mo><mo>∇</mo><mi>P</mi><mo>|</mo></mrow><mspace></mspace><mo>‖</mo></mrow><mrow><mi>p</mi><mo>,</mo><mi>w</mi></mrow></msub></mrow><mrow><msub><mrow><mo>‖</mo><mi>P</mi><mo>‖</mo></mrow><mrow><mi>p</mi><mo>,</mo><mi>w</mi></mrow></msub></mrow></mfrac><mo>,</mo></mrow></math></span> where <span><math><mrow><mo>∇</mo><mi>P</mi></mrow></math></span> is the gradient of <span><math><mi>P</mi></math></span>. We investigate the worst case Markov factors for <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>w</mi></mrow></msub></math></span> and prove that the degree of these factors is at most 2. In particular, for the Gegenbauer weight <span><math><mrow><msub><mrow><mi>w</mi></mrow><mrow><mi>μ</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mi>μ</mi><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mi>μ</mi><mo>≥</mo><mn>0</mn><mo>,</mo></mrow></math></span> the exponent 2 is sharp. We also study the average case Markov factor for <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>w</mi></mrow></msub></math></span><span> on random polynomials with independent </span><span><math><mrow><mi>N</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msup><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> coefficients and obtain that the upper bound of the average (expected) Markov factor is order degree to the <span><math><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></math></span>, as compared to the degree squared worst case upper bound.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904523000771","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Lp,w,1p<, denote the weighted Lp space of functions on the unit ball Bd with a doubling weight w on Bd. The Markov factor for Lp,w of a polynomial P is defined by |P|p,wPp,w, where P is the gradient of P. We investigate the worst case Markov factors for Lp,w and prove that the degree of these factors is at most 2. In particular, for the Gegenbauer weight wμ(x)=(1|x|2)μ1/2,μ0, the exponent 2 is sharp. We also study the average case Markov factor for L2,w on random polynomials with independent N(0,σ2) coefficients and obtain that the upper bound of the average (expected) Markov factor is order degree to the 3/2, as compared to the degree squared worst case upper bound.

球上权重加倍的加权Lp-Markov因子
设Lp,w,1≤p<;∞,表示单位球Bd上函数的加权Lp空间,在Bd上具有加倍权w。多项式P的Lp,w的Markov因子由‖|ŞP|‖P,w‖P‖P定义,其中,ŞP是P的梯度。我们研究了Lp,w的最坏情况Markov因子,并证明了这些因子的阶数至多为2。特别地,对于Gegenbauer重量wμ(x)=(1−|x|2)μ−1/2,μ≥0,指数2是尖锐的。我们还研究了具有独立N(0,σ2)系数的随机多项式上L2,w的平均情况马尔可夫因子,并得出平均(期望)马尔可夫因子的上界是3/2的阶数,与次平方最坏情况上界相比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信