{"title":"Weighted Lp Markov factors with doubling weights on the ball","authors":"Jiansong Li , Heping Wang , Kai Wang","doi":"10.1016/j.jat.2023.105939","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>w</mi></mrow></msub><mo>,</mo><mspace></mspace><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mi>∞</mi><mo>,</mo></mrow></math></span> denote the weighted <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> space of functions on the unit ball <span><math><msup><mrow><mi>B</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> with a doubling weight <span><math><mi>w</mi></math></span> on <span><math><msup><mrow><mi>B</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. The Markov factor for <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>w</mi></mrow></msub></math></span> of a polynomial <span><math><mi>P</mi></math></span> is defined by <span><math><mrow><mfrac><mrow><msub><mrow><mo>‖</mo><mspace></mspace><mrow><mo>|</mo><mo>∇</mo><mi>P</mi><mo>|</mo></mrow><mspace></mspace><mo>‖</mo></mrow><mrow><mi>p</mi><mo>,</mo><mi>w</mi></mrow></msub></mrow><mrow><msub><mrow><mo>‖</mo><mi>P</mi><mo>‖</mo></mrow><mrow><mi>p</mi><mo>,</mo><mi>w</mi></mrow></msub></mrow></mfrac><mo>,</mo></mrow></math></span> where <span><math><mrow><mo>∇</mo><mi>P</mi></mrow></math></span> is the gradient of <span><math><mi>P</mi></math></span>. We investigate the worst case Markov factors for <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>w</mi></mrow></msub></math></span> and prove that the degree of these factors is at most 2. In particular, for the Gegenbauer weight <span><math><mrow><msub><mrow><mi>w</mi></mrow><mrow><mi>μ</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mi>μ</mi><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mi>μ</mi><mo>≥</mo><mn>0</mn><mo>,</mo></mrow></math></span> the exponent 2 is sharp. We also study the average case Markov factor for <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>w</mi></mrow></msub></math></span><span> on random polynomials with independent </span><span><math><mrow><mi>N</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msup><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> coefficients and obtain that the upper bound of the average (expected) Markov factor is order degree to the <span><math><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></math></span>, as compared to the degree squared worst case upper bound.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904523000771","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let denote the weighted space of functions on the unit ball with a doubling weight on . The Markov factor for of a polynomial is defined by where is the gradient of . We investigate the worst case Markov factors for and prove that the degree of these factors is at most 2. In particular, for the Gegenbauer weight the exponent 2 is sharp. We also study the average case Markov factor for on random polynomials with independent coefficients and obtain that the upper bound of the average (expected) Markov factor is order degree to the , as compared to the degree squared worst case upper bound.
期刊介绍:
The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others:
• Classical approximation
• Abstract approximation
• Constructive approximation
• Degree of approximation
• Fourier expansions
• Interpolation of operators
• General orthogonal systems
• Interpolation and quadratures
• Multivariate approximation
• Orthogonal polynomials
• Padé approximation
• Rational approximation
• Spline functions of one and several variables
• Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds
• Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth)
• Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis
• Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth)
• Gabor (Weyl-Heisenberg) expansions and sampling theory.