Two-geodesic transitive graphs of order pn with n ≤ 3

IF 0.9 2区 数学 Q2 MATHEMATICS
Jun-Jie Huang, Yan-Quan Feng, Jin-Xin Zhou, Fu-Gang Yin
{"title":"Two-geodesic transitive graphs of order pn with n ≤ 3","authors":"Jun-Jie Huang,&nbsp;Yan-Quan Feng,&nbsp;Jin-Xin Zhou,&nbsp;Fu-Gang Yin","doi":"10.1016/j.jcta.2023.105814","DOIUrl":null,"url":null,"abstract":"<div><p>A vertex triple <span><math><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></math></span> of a graph is called a 2<em>-geodesic</em> if <em>v</em> is adjacent to both <em>u</em> and <em>w</em> and <em>u</em> is not adjacent to <em>w</em>. A graph is said to be 2<em>-geodesic transitive</em><span> if its automorphism group is transitive on the set of 2-geodesics. In this paper, a complete classification of 2-geodesic transitive graphs of order </span><span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is given for each prime <em>p</em> and <span><math><mi>n</mi><mo>≤</mo><mn>3</mn></math></span><span>. It turns out that all such graphs consist of three small graphs: the complete bipartite graph </span><span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn><mo>,</mo><mn>4</mn></mrow></msub></math></span> of order 8, the Schläfli graph of order 27 and its complement, and fourteen infinite families: the cycles <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span>, the complete graphs <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span>, the complete multipartite graphs <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi><mo>[</mo><mi>p</mi><mo>]</mo></mrow></msub></math></span>, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi><mo>[</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>]</mo></mrow></msub></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>[</mo><mi>p</mi><mo>]</mo></mrow></msub></math></span>, the Hamming graph <span><math><mi>H</mi><mo>(</mo><mn>2</mn><mo>,</mo><mi>p</mi><mo>)</mo></math></span> and its complement, the Hamming graph <span><math><mi>H</mi><mo>(</mo><mn>3</mn><mo>,</mo><mi>p</mi><mo>)</mo></math></span><span>, and two infinite families of normal Cayley graphs on the extraspecial group of order </span><span><math><msup><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> and exponent <em>p</em>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"202 ","pages":"Article 105814"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316523000821","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A vertex triple (u,v,w) of a graph is called a 2-geodesic if v is adjacent to both u and w and u is not adjacent to w. A graph is said to be 2-geodesic transitive if its automorphism group is transitive on the set of 2-geodesics. In this paper, a complete classification of 2-geodesic transitive graphs of order pn is given for each prime p and n3. It turns out that all such graphs consist of three small graphs: the complete bipartite graph K4,4 of order 8, the Schläfli graph of order 27 and its complement, and fourteen infinite families: the cycles Cp,Cp2 and Cp3, the complete graphs Kp,Kp2 and Kp3, the complete multipartite graphs Kp[p], Kp[p2] and Kp2[p], the Hamming graph H(2,p) and its complement, the Hamming graph H(3,p), and two infinite families of normal Cayley graphs on the extraspecial group of order p3 and exponent p.

两个n阶pn的测地传递图 ≤ 3.
图的顶点三元组(u,v,w)称为2-测地线,如果v与u和w都相邻,并且u不与w相邻。如果图的自同构群在2-测地线集上是可传递的,则称图为2-测地可传递图。本文对每个素数p和n≤3给出了pn阶2-测地传递图的完全分类。结果表明,所有这些图都由三个小图组成:8阶的完全二分图K4,4,27阶的Schläfli图及其补码,以及十四个无限族:循环Cp,Cp2和Cp3,完全图Kp,Kp2和Kp3,完全多部分图Kp[p],Kp[p2]和Kp2[p],Hamming图H(2,p)及其补码,以及在p3阶指数p的特殊群上的正规Cayley图的两个无穷大族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信