Kang Jin , Nan Zhang , Wei Wang , Yongjian Hao , Bing Liu
{"title":"2D compound structures with deep subwavelength period on silicon fabricated by double time delayed femtosecond laser beams","authors":"Kang Jin , Nan Zhang , Wei Wang , Yongjian Hao , Bing Liu","doi":"10.1016/j.photonics.2023.101188","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, two orthogonally polarized femtosecond laser beams<span> are employed to irradiate a p-doped silicon<span> wafer with an electrical resistivity of 0.008 Ω·cm. It is interesting to find that 2D compound structures composed of sub-wavelength periodic ripples and deep sub-wavelength nanodot<span><span> array can be produced when proper laser fluence and time delay between the dual laser beams are used. The formation of the periodic ripples can be explained by the interference between the preceding incident laser and it induced </span>surface plasmon<span> polaritons (SPPs). The periodic nanodot array has a period down to ∼200 nm and the radius of the nanodot is ∼30 nm, most of which appear at the boundary between the ditch and ridge of the ripple. During the ripples’ formation, the residual melting silicon is most probably located at the boundary between the ditch and ridge of the ripple. Furthermore, the period of the nanodot array is roughly equal to the perimeter of the nanodot. Therefore, it is considered that the dot array may be generated due to the Rayleigh-Taylor instability of the melting silicon. It is also noted that these nanodots are all uniformly arranged along vertical lines, indicating that the subsequent incident laser may break the stochastic characteristic of the Rayleigh-Taylor instability and produce the 2D periodic dot array. The thermo-hydrodynamical process combined with the interference effect between SPPs and the incident laser can benefit the formation of complex surface structures with versatile functions.</span></span></span></span></p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"57 ","pages":"Article 101188"},"PeriodicalIF":2.5000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441023000822","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, two orthogonally polarized femtosecond laser beams are employed to irradiate a p-doped silicon wafer with an electrical resistivity of 0.008 Ω·cm. It is interesting to find that 2D compound structures composed of sub-wavelength periodic ripples and deep sub-wavelength nanodot array can be produced when proper laser fluence and time delay between the dual laser beams are used. The formation of the periodic ripples can be explained by the interference between the preceding incident laser and it induced surface plasmon polaritons (SPPs). The periodic nanodot array has a period down to ∼200 nm and the radius of the nanodot is ∼30 nm, most of which appear at the boundary between the ditch and ridge of the ripple. During the ripples’ formation, the residual melting silicon is most probably located at the boundary between the ditch and ridge of the ripple. Furthermore, the period of the nanodot array is roughly equal to the perimeter of the nanodot. Therefore, it is considered that the dot array may be generated due to the Rayleigh-Taylor instability of the melting silicon. It is also noted that these nanodots are all uniformly arranged along vertical lines, indicating that the subsequent incident laser may break the stochastic characteristic of the Rayleigh-Taylor instability and produce the 2D periodic dot array. The thermo-hydrodynamical process combined with the interference effect between SPPs and the incident laser can benefit the formation of complex surface structures with versatile functions.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.