Integer colorings with forbidden rainbow sums

IF 0.9 2区 数学 Q2 MATHEMATICS
Yangyang Cheng , Yifan Jing , Lina Li , Guanghui Wang , Wenling Zhou
{"title":"Integer colorings with forbidden rainbow sums","authors":"Yangyang Cheng ,&nbsp;Yifan Jing ,&nbsp;Lina Li ,&nbsp;Guanghui Wang ,&nbsp;Wenling Zhou","doi":"10.1016/j.jcta.2023.105769","DOIUrl":null,"url":null,"abstract":"<div><p>For a set of positive integers <span><math><mi>A</mi><mo>⊆</mo><mo>[</mo><mi>n</mi><mo>]</mo></math></span>, an <em>r</em>-coloring of <em>A</em> is rainbow sum-free if it contains no rainbow Schur triple. In this paper we initiate the study of the rainbow Erdős-Rothschild problem in the context of sum-free sets, which asks for the subsets of <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span> with the maximum number of rainbow sum-free <em>r</em>-colorings. We show that for <span><math><mi>r</mi><mo>=</mo><mn>3</mn></math></span>, the interval <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span> is optimal, while for <span><math><mi>r</mi><mo>≥</mo><mn>8</mn></math></span>, the set <span><math><mo>[</mo><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>,</mo><mi>n</mi><mo>]</mo></math></span> is optimal. We also prove a stability theorem for <span><math><mi>r</mi><mo>≥</mo><mn>4</mn></math></span><span>. The proofs rely on the hypergraph container method, and some ad-hoc stability analysis.</span></p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"199 ","pages":"Article 105769"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316523000377","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

For a set of positive integers A[n], an r-coloring of A is rainbow sum-free if it contains no rainbow Schur triple. In this paper we initiate the study of the rainbow Erdős-Rothschild problem in the context of sum-free sets, which asks for the subsets of [n] with the maximum number of rainbow sum-free r-colorings. We show that for r=3, the interval [n] is optimal, while for r8, the set [n/2,n] is optimal. We also prove a stability theorem for r4. The proofs rely on the hypergraph container method, and some ad-hoc stability analysis.

带禁止彩虹和的整数着色
对于一组正整数a⊆[n],如果a的r-染色不包含彩虹Schur三重,则它是无彩虹和的。在本文中,我们在无和集的背景下开始研究彩虹Erdõs-Rothschild问题,该问题要求[n]的子集具有最大数量的彩虹无和r-着色。我们证明,对于r=3,区间[n]是最优的,而对于r≥8,集合[⌊n/2⌋,n]是最优。我们还证明了r≥4的一个稳定性定理。证明依赖于超图容器方法和一些特殊的稳定性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信