Successive vertex orderings of fully regular graphs

IF 0.9 2区 数学 Q2 MATHEMATICS
Lixing Fang , Hao Huang , János Pach , Gábor Tardos , Junchi Zuo
{"title":"Successive vertex orderings of fully regular graphs","authors":"Lixing Fang ,&nbsp;Hao Huang ,&nbsp;János Pach ,&nbsp;Gábor Tardos ,&nbsp;Junchi Zuo","doi":"10.1016/j.jcta.2023.105776","DOIUrl":null,"url":null,"abstract":"<div><p>A graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> is called <em>fully regular</em> if for every independent set <span><math><mi>I</mi><mo>⊂</mo><mi>V</mi></math></span>, the number of vertices in <span><math><mi>V</mi><mo>∖</mo><mi>I</mi></math></span> that are not connected to any element of <em>I</em> depends only on the size of <em>I</em>. A linear ordering of the vertices of <em>G</em> is called <em>successive</em> if for every <em>i</em>, the first <em>i</em> vertices induce a connected subgraph of <em>G</em>. We give an explicit formula for the number of successive vertex orderings of a fully regular graph.</p><p>As an application of our results, we give alternative proofs of two theorems of Stanley and Gao &amp; Peng, determining the number of linear <em>edge</em> orderings of complete graphs and complete bipartite graphs, respectively, with the property that the first <em>i</em> edges induce a connected subgraph.</p><p>As another application, we give a simple product formula for the number of linear orderings of the hyperedges of a complete 3-partite 3-uniform hypergraph such that, for every <em>i</em>, the first <em>i</em> hyperedges induce a connected subgraph. We found similar formulas for complete (non-partite) 3-uniform hypergraphs and in another closely related case, but we managed to verify them only when the number of vertices is small.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"199 ","pages":"Article 105776"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316523000444","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

A graph G=(V,E) is called fully regular if for every independent set IV, the number of vertices in VI that are not connected to any element of I depends only on the size of I. A linear ordering of the vertices of G is called successive if for every i, the first i vertices induce a connected subgraph of G. We give an explicit formula for the number of successive vertex orderings of a fully regular graph.

As an application of our results, we give alternative proofs of two theorems of Stanley and Gao & Peng, determining the number of linear edge orderings of complete graphs and complete bipartite graphs, respectively, with the property that the first i edges induce a connected subgraph.

As another application, we give a simple product formula for the number of linear orderings of the hyperedges of a complete 3-partite 3-uniform hypergraph such that, for every i, the first i hyperedges induce a connected subgraph. We found similar formulas for complete (non-partite) 3-uniform hypergraphs and in another closely related case, but we managed to verify them only when the number of vertices is small.

完全正则图的连续顶点序
图G=(V,E)被称为完全正则如果对于每个独立集I⊂V,V∖I中不连接到I的任何元素的顶点的数量仅取决于I的大小。G的顶点的线性排序被称为连续如果对于每个I,前I个顶点诱导G的连通子图。我们给出了一个关于全正则图的连续顶点序数的显式公式。作为结果的一个应用,我们给出了Stanley和Gao&;Peng,分别确定了完全图和完全二分图的线性边序的个数,具有前i个边诱导连通子图的性质。作为另一个应用,我们给出了一个关于完全3-部分3-一致超图的超边的线性序数的简单乘积公式,使得对于每个i,前i个超边诱导一个连通子图。我们在完全(非部分)3-一致超图和另一个密切相关的情况下发现了类似的公式,但我们只能在顶点数量很小时才能验证它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信