Quarklet characterizations for Triebel–Lizorkin spaces

IF 0.9 3区 数学 Q2 MATHEMATICS
Marc Hovemann , Stephan Dahlke
{"title":"Quarklet characterizations for Triebel–Lizorkin spaces","authors":"Marc Hovemann ,&nbsp;Stephan Dahlke","doi":"10.1016/j.jat.2023.105968","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we prove that under some conditions on the parameters the univariate Triebel–Lizorkin spaces <span><math><mrow><msubsup><mrow><mi>F</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>q</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span><span> can be characterized in terms of quarklets. So for functions from Triebel–Lizorkin spaces we obtain a quarkonial decomposition as well as a new equivalent quasi-norm. For that purpose we use quarklets that are constructed by means of biorthogonal compactly supported Cohen–Daubechies–Feauveau spline wavelets, where the primal generator is a cardinal B-spline. Moreover we introduce some sequence spaces apposite to our quarklet system and study their properties. Finally we also obtain a quarklet characterization for the Triebel–Lizorkin–Morrey spaces </span><span><math><mrow><msubsup><mrow><mi>E</mi></mrow><mrow><mi>u</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>q</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904523001065","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we prove that under some conditions on the parameters the univariate Triebel–Lizorkin spaces Fr,qs(R) can be characterized in terms of quarklets. So for functions from Triebel–Lizorkin spaces we obtain a quarkonial decomposition as well as a new equivalent quasi-norm. For that purpose we use quarklets that are constructed by means of biorthogonal compactly supported Cohen–Daubechies–Feauveau spline wavelets, where the primal generator is a cardinal B-spline. Moreover we introduce some sequence spaces apposite to our quarklet system and study their properties. Finally we also obtain a quarklet characterization for the Triebel–Lizorkin–Morrey spaces Eu,r,qs(R).

Triebel–Lizorkin空间的Quarklet刻画
本文证明了在参数的某些条件下,单变量Triebel–Lizorkin空间Fr,qs(R)可以用夸克来刻画。因此,对于来自Triebel–Lizorkin空间的函数,我们得到了一个夸克分解以及一个新的等价拟范数。为此,我们使用通过双正交紧支撑Cohen–Daubechies–Feauveau样条小波构造的夸克集,其中原始生成器是基数B样条。此外,我们还引入了一些与我们的夸克系统相近的序列空间,并研究了它们的性质。最后,我们还得到了Triebel–Lizorkin–Morrey空间Eu,r,qs(r)的夸克列刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信