{"title":"Shaping the future of sustainable energy through AI-enabled circular economy policies","authors":"Mir Sayed Shah Danish, Tomonobu Senjyu","doi":"10.1016/j.cec.2023.100040","DOIUrl":null,"url":null,"abstract":"<div><p>The energy sector is enduring a momentous transformation with new technological advancements and increasing demand leading to innovative pathways. Artificial intelligence (AI) is emerging as a critical driver of the change, offering new ways to optimize energy systems operations, control, automation, etc. Developing a competitive policy framework aligned with circular economy practices to adapt to the trends of the rapid revolution is crucial, shaping the future of energy and leading the sector in a sustainable, equitable, and impartial direction. This study aims to propose an AI-driven policy framework that aligns with the circular economy business model to address the transformation trend in the development of energy policies through a multidisciplinary approach. The study identifies key trends, various approaches, and evaluates the potential of AI in addressing the challenges. The AI-driven policy paradigm outlines a comprehensive framework and roadmap to harness the potential of AI through a forward-looking policy framework that considers the rapidly changing landscape and the essence of the circular economy. The proposed novel framework provides a roadmap for researchers, governments, and other stakeholders to navigate the future of energy and unlock the potential of AI for a sustainable energy future.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"2 2","pages":"Article 100040"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circular Economy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773167723000171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The energy sector is enduring a momentous transformation with new technological advancements and increasing demand leading to innovative pathways. Artificial intelligence (AI) is emerging as a critical driver of the change, offering new ways to optimize energy systems operations, control, automation, etc. Developing a competitive policy framework aligned with circular economy practices to adapt to the trends of the rapid revolution is crucial, shaping the future of energy and leading the sector in a sustainable, equitable, and impartial direction. This study aims to propose an AI-driven policy framework that aligns with the circular economy business model to address the transformation trend in the development of energy policies through a multidisciplinary approach. The study identifies key trends, various approaches, and evaluates the potential of AI in addressing the challenges. The AI-driven policy paradigm outlines a comprehensive framework and roadmap to harness the potential of AI through a forward-looking policy framework that considers the rapidly changing landscape and the essence of the circular economy. The proposed novel framework provides a roadmap for researchers, governments, and other stakeholders to navigate the future of energy and unlock the potential of AI for a sustainable energy future.