An insight into high-temperature deformation mechanism of magnesium in-situ composite through development of Johnson-Cook and constitutive model

Q1 Engineering
Rohit Jain, Harsh Soni, R.P. Mahto, B.N. Sahoo
{"title":"An insight into high-temperature deformation mechanism of magnesium in-situ composite through development of Johnson-Cook and constitutive model","authors":"Rohit Jain,&nbsp;Harsh Soni,&nbsp;R.P. Mahto,&nbsp;B.N. Sahoo","doi":"10.1016/j.ijlmm.2023.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>The establishment of deformation mechanisms of Mg-metal matrix composite (Mg-MMC) is important to improve the high-temperature challenging applications. In this present work, an AZ91/TiC + TiB<sub>2</sub> hybrid <em>in-situ</em> Mg-MMC was synthesized, and its deformation mechanisms were studied through a uniaxial hot compressive test at different temperatures and strain rates. The Johnson-Cook (JC) model and constitutive equation were established using experimental stress-strain data. Through the development of JC model, it was revealed that the TiC–TiB<sub>2</sub> particles enhanced the yield strength parameter and increased the activation energy of the <em>in-situ</em> composite compared to the parent alloy. The load-shifting capability and grain refinement were found to be the dominating mechanisms, which effectively restricted dislocation movement during deformation, resulting in improved deformation resilience of the composite. A detailed study of JC model and constitutive equation parameters was analyzed with a focus on their microstructures.</p></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lightweight Materials and Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258884042300046X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The establishment of deformation mechanisms of Mg-metal matrix composite (Mg-MMC) is important to improve the high-temperature challenging applications. In this present work, an AZ91/TiC + TiB2 hybrid in-situ Mg-MMC was synthesized, and its deformation mechanisms were studied through a uniaxial hot compressive test at different temperatures and strain rates. The Johnson-Cook (JC) model and constitutive equation were established using experimental stress-strain data. Through the development of JC model, it was revealed that the TiC–TiB2 particles enhanced the yield strength parameter and increased the activation energy of the in-situ composite compared to the parent alloy. The load-shifting capability and grain refinement were found to be the dominating mechanisms, which effectively restricted dislocation movement during deformation, resulting in improved deformation resilience of the composite. A detailed study of JC model and constitutive equation parameters was analyzed with a focus on their microstructures.

通过Johnson Cook和本构模型的发展深入了解镁原位复合材料的高温变形机制
建立镁-金属基复合材料(Mg-MMC)的变形机制对于改善具有高温挑战性的应用具有重要意义。本工作合成了AZ91/TiC+TiB2复合原位Mg-MMC,并通过不同温度和应变速率下的单轴热压缩试验研究了其变形机制。利用实验应力-应变数据建立了Johnson-Cook(JC)模型和本构方程。通过JC模型的发展,发现与母体合金相比,TiC–TiB2颗粒提高了原位复合材料的屈服强度参数,并提高了活化能。负载转移能力和晶粒细化是主要机制,它们有效地限制了变形过程中的位错运动,从而提高了复合材料的变形弹性。对JC模型和本构方程参数进行了详细的研究,重点分析了它们的微观结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Lightweight Materials and Manufacture
International Journal of Lightweight Materials and Manufacture Engineering-Industrial and Manufacturing Engineering
CiteScore
9.90
自引率
0.00%
发文量
52
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信