Chengyi Wang , Ran Li , Yubo Xu , Zhongbao Ma , Yangbo Qiu , Chao Wang , Long-Fei Ren , Jiahui Shao
{"title":"Effective electrosorption and recovery of phosphorus by capacitive deionization with a covalent organic framework-membrane coating electrode","authors":"Chengyi Wang , Ran Li , Yubo Xu , Zhongbao Ma , Yangbo Qiu , Chao Wang , Long-Fei Ren , Jiahui Shao","doi":"10.1016/j.desal.2023.117088","DOIUrl":null,"url":null,"abstract":"<div><p>Capacitive deionization (CDI) holds great promise for phosphorus adsorption and recovery from wastewater, while current electrodes exhibit poor salt adsorption capacity (SAC) and selectivity due to co-ion effect and interference of co-existed ions with high concentration. Herein, to overcome these issues, a facile route was proposed to prepare a covalent organic framework-membrane coating electrode (COF-MCE) by depositing polyvinyl alcohol/polyethyleneimine membrane onto activated carbon fiber (ACF) followed by the in-situ growth of COF-LZU1. Compared to ACF and MCE, COF-MCE, with abundant functional groups and specific sites, facilitated electrical double layer (EDL)-based adsorption and induced hydrogen-bond interaction with phosphorus, contributing to a higher SAC of phosphorus (10.5 mg/g) in treating 1 mM NaH<sub>2</sub>PO<sub>4</sub>. When treating different mixtures of NaH<sub>2</sub>PO<sub>4</sub>/NaCl, NaH<sub>2</sub>PO<sub>4</sub>/NaNO<sub>3</sub>, and NaH<sub>2</sub>PO<sub>4</sub>/Na<sub>2</sub>SO<sub>4</sub> with molar ratio of 1:5, COF-MCE exhibited the high phosphorus selectivity of 3.62, 5.98 and 7.01, respectively, which was attributed to the synergistic effects of EDL-based adsorption, hydrogen-bond and pseudocapacitance. Desorption experiments revealed that high reversal voltage and alkaline condition can weaken the hydrogen-bond interaction and strengthen the electrostatic repulsion between COF-MCE and phosphorus, thus improving the desorption and recovery of phosphorus. These findings confirmed the high potential of COF-MCE in the effective electrosorption and recovery of phosphorus from wastewater.</p></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"570 ","pages":"Article 117088"},"PeriodicalIF":8.3000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916423007208","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Capacitive deionization (CDI) holds great promise for phosphorus adsorption and recovery from wastewater, while current electrodes exhibit poor salt adsorption capacity (SAC) and selectivity due to co-ion effect and interference of co-existed ions with high concentration. Herein, to overcome these issues, a facile route was proposed to prepare a covalent organic framework-membrane coating electrode (COF-MCE) by depositing polyvinyl alcohol/polyethyleneimine membrane onto activated carbon fiber (ACF) followed by the in-situ growth of COF-LZU1. Compared to ACF and MCE, COF-MCE, with abundant functional groups and specific sites, facilitated electrical double layer (EDL)-based adsorption and induced hydrogen-bond interaction with phosphorus, contributing to a higher SAC of phosphorus (10.5 mg/g) in treating 1 mM NaH2PO4. When treating different mixtures of NaH2PO4/NaCl, NaH2PO4/NaNO3, and NaH2PO4/Na2SO4 with molar ratio of 1:5, COF-MCE exhibited the high phosphorus selectivity of 3.62, 5.98 and 7.01, respectively, which was attributed to the synergistic effects of EDL-based adsorption, hydrogen-bond and pseudocapacitance. Desorption experiments revealed that high reversal voltage and alkaline condition can weaken the hydrogen-bond interaction and strengthen the electrostatic repulsion between COF-MCE and phosphorus, thus improving the desorption and recovery of phosphorus. These findings confirmed the high potential of COF-MCE in the effective electrosorption and recovery of phosphorus from wastewater.
期刊介绍:
Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area.
The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes.
By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.