Robustness of microbiome function

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kiseok Keith Lee , Yeonwoo Park , Seppe Kuehn
{"title":"Robustness of microbiome function","authors":"Kiseok Keith Lee ,&nbsp;Yeonwoo Park ,&nbsp;Seppe Kuehn","doi":"10.1016/j.coisb.2023.100479","DOIUrl":null,"url":null,"abstract":"<div><p><span>Microbial communities perform metabolic processes that sustain life on Earth and promote human health. Microbial consortia sustain these functions in the face of constant structural and environmental perturbations. How do complex communities robustly sustain their functional properties despite perturbations? Most studies of functional robustness in the </span>microbiome have been limited to biodiversity and functional redundancy, the idea that there are multiple members of the community that can sustain a specific function. Here, we propose that ideas from other complex biological systems may be applied to deepen our understanding of microbiome robustness. By surveying the causes of functional robustness in a variety of biological systems, including proteins and cells, and discussing how they can be applied to the microbiome, we build conceptual and experimental frameworks for understanding the functional robustness of microbial communities. We hope that these insights might help better predict and engineer microbiome function.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310023000367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Microbial communities perform metabolic processes that sustain life on Earth and promote human health. Microbial consortia sustain these functions in the face of constant structural and environmental perturbations. How do complex communities robustly sustain their functional properties despite perturbations? Most studies of functional robustness in the microbiome have been limited to biodiversity and functional redundancy, the idea that there are multiple members of the community that can sustain a specific function. Here, we propose that ideas from other complex biological systems may be applied to deepen our understanding of microbiome robustness. By surveying the causes of functional robustness in a variety of biological systems, including proteins and cells, and discussing how they can be applied to the microbiome, we build conceptual and experimental frameworks for understanding the functional robustness of microbial communities. We hope that these insights might help better predict and engineer microbiome function.

微生物组功能的稳健性
微生物群落进行代谢过程,维持地球上的生命并促进人类健康。微生物群落在不断的结构和环境扰动面前维持这些功能。复杂群落如何在扰动的情况下稳健地维持其功能特性?大多数关于微生物组功能稳健性的研究都局限于生物多样性和功能冗余,即群落中有多个成员可以维持特定的功能。在这里,我们提出,来自其他复杂生物系统的想法可以应用于加深我们对微生物组稳健性的理解。通过调查包括蛋白质和细胞在内的各种生物系统中功能稳健性的原因,并讨论如何将其应用于微生物组,我们建立了理解微生物群落功能稳健性的概念和实验框架。我们希望这些见解可能有助于更好地预测和设计微生物组的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Systems Biology
Current Opinion in Systems Biology Mathematics-Applied Mathematics
CiteScore
7.10
自引率
2.70%
发文量
20
期刊介绍: Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信