Distribution-free estimation of individual parameter logit (IPL) models using combined evolutionary and optimization algorithms

IF 2.8 3区 经济学 Q1 ECONOMICS
Joffre Swait
{"title":"Distribution-free estimation of individual parameter logit (IPL) models using combined evolutionary and optimization algorithms","authors":"Joffre Swait","doi":"10.1016/j.jocm.2022.100396","DOIUrl":null,"url":null,"abstract":"<div><p>When estimating random coefficients models from choice data, decisions relating to the multivariate density function assumed to describe preference heterogeneity across the population raise questions about stochastic (in)dependence between preference dimensions, uni- vs. multi-modality, potential point masses, bounds and/or constraints on support regions, among other concerns. Parametric representations of population distributions have generally implied uncomfortable compromises to achieve estimation tractability. It would seem preferable to sidestep such issues by estimating individual preferences in a distribution-free manner, but this freedom of form implies a large number of parameters since we lose the parsimony enabled by parametric densities and must deal directly with estimation of individual decision maker preferences. I propose a hybrid distribution-free estimator for individual parameter logit models that uses a genetic algorithm as first stage, the solution from which becomes a starting point for a gradient-based search to obtain the final posterior maximum likelihood estimates of individual preferences. This estimator is described in detail, its parameter recovery capability is tested with Monte Carlo data generation simulations, and a case study is developed in some detail to illustrate its use in policy analysis. The estimator can be applied to both stated and revealed preference data, requiring only that sufficient choice replications be available for individual observation units consistent with extant estimation methods. Computational experience shows the estimator to require CPU times comparable to extant simulation-based estimation methods, meaning that its use is practical for the exploration of the parameter space through multiple trials.</p></div>","PeriodicalId":46863,"journal":{"name":"Journal of Choice Modelling","volume":"47 ","pages":"Article 100396"},"PeriodicalIF":2.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Choice Modelling","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755534522000537","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 4

Abstract

When estimating random coefficients models from choice data, decisions relating to the multivariate density function assumed to describe preference heterogeneity across the population raise questions about stochastic (in)dependence between preference dimensions, uni- vs. multi-modality, potential point masses, bounds and/or constraints on support regions, among other concerns. Parametric representations of population distributions have generally implied uncomfortable compromises to achieve estimation tractability. It would seem preferable to sidestep such issues by estimating individual preferences in a distribution-free manner, but this freedom of form implies a large number of parameters since we lose the parsimony enabled by parametric densities and must deal directly with estimation of individual decision maker preferences. I propose a hybrid distribution-free estimator for individual parameter logit models that uses a genetic algorithm as first stage, the solution from which becomes a starting point for a gradient-based search to obtain the final posterior maximum likelihood estimates of individual preferences. This estimator is described in detail, its parameter recovery capability is tested with Monte Carlo data generation simulations, and a case study is developed in some detail to illustrate its use in policy analysis. The estimator can be applied to both stated and revealed preference data, requiring only that sufficient choice replications be available for individual observation units consistent with extant estimation methods. Computational experience shows the estimator to require CPU times comparable to extant simulation-based estimation methods, meaning that its use is practical for the exploration of the parameter space through multiple trials.

使用进化和优化算法组合的个体参数logit(IPL)模型的无分布估计
当根据选择数据估计随机系数模型时,与假设用于描述整个群体的偏好异质性的多元密度函数相关的决策引发了关于偏好维度、单模态与多模态、潜在点质量、边界和/或支持区域约束之间的随机(内)依赖性等问题。总体分布的参数表示通常隐含着令人不舒服的折衷,以实现估计的可处理性。通过以无分布的方式估计个人偏好来回避这些问题似乎更可取,但这种形式的自由意味着大量的参数,因为我们失去了参数密度所带来的简约性,必须直接处理个人决策者偏好的估计。我提出了一种用于个体参数logit模型的混合无分布估计器,该估计器使用遗传算法作为第一阶段,该解成为基于梯度的搜索的起点,以获得个体偏好的最终后验最大似然估计。详细描述了该估计器,并通过蒙特卡洛数据生成模拟测试了其参数恢复能力,并详细开发了一个案例研究来说明其在策略分析中的应用。该估计器可以应用于陈述和揭示的偏好数据,只需要与现有的估计方法一致的单个观察单元有足够的选择复制。计算经验表明,该估计器所需的CPU时间与现有的基于模拟的估计方法相当,这意味着它的使用对于通过多次试验探索参数空间是实用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信