Machine-learning the skill of mutual fund managers

IF 10.4 1区 经济学 Q1 BUSINESS, FINANCE
Ron Kaniel , Zihan Lin , Markus Pelger , Stijn Van Nieuwerburgh
{"title":"Machine-learning the skill of mutual fund managers","authors":"Ron Kaniel ,&nbsp;Zihan Lin ,&nbsp;Markus Pelger ,&nbsp;Stijn Van Nieuwerburgh","doi":"10.1016/j.jfineco.2023.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>We show, using machine learning, that fund characteristics can consistently differentiate high from low-performing mutual funds, before and after fees. The outperformance persists for more than three years. Fund momentum and fund flow are the most important predictors of future risk-adjusted fund performance, while characteristics of the stocks that funds hold are not predictive. Returns of predictive long-short portfolios are higher following a period of high sentiment. Our estimation with neural networks enables us to uncover novel and substantial interaction effects between sentiment and both fund flow and fund momentum.</p></div>","PeriodicalId":51346,"journal":{"name":"Journal of Financial Economics","volume":"150 1","pages":"Pages 94-138"},"PeriodicalIF":10.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304405X23001253","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We show, using machine learning, that fund characteristics can consistently differentiate high from low-performing mutual funds, before and after fees. The outperformance persists for more than three years. Fund momentum and fund flow are the most important predictors of future risk-adjusted fund performance, while characteristics of the stocks that funds hold are not predictive. Returns of predictive long-short portfolios are higher following a period of high sentiment. Our estimation with neural networks enables us to uncover novel and substantial interaction effects between sentiment and both fund flow and fund momentum.

机器学习共同基金经理的技能
我们使用机器学习表明,在收费前后,基金特征可以始终如一地区分高绩效和低绩效的共同基金。跑赢大盘的情况持续了三年多。基金动量和资金流是未来风险调整基金业绩的最重要预测因素,而基金持有股票的特征并不能预测。经过一段时间的情绪高涨后,预测性多空投资组合的回报率更高。我们使用神经网络进行的估计使我们能够揭示情绪与资金流动和资金动量之间的新颖而实质性的相互作用效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.80
自引率
4.50%
发文量
192
审稿时长
37 days
期刊介绍: The Journal of Financial Economics provides a specialized forum for the publication of research in the area of financial economics and the theory of the firm, placing primary emphasis on the highest quality analytical, empirical, and clinical contributions in the following major areas: capital markets, financial institutions, corporate finance, corporate governance, and the economics of organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信