Xiao Liu, Zhiyong Zhang, Kristin Valentino, Lijuan Wang
{"title":"The Impact of Omitting Confounders in Parallel Process Latent Growth Curve Mediation Models: Three Sensitivity Analysis Approaches","authors":"Xiao Liu, Zhiyong Zhang, Kristin Valentino, Lijuan Wang","doi":"10.1080/10705511.2023.2189551","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b></p><p>Parallel process latent growth curve mediation models (PP-LGCMMs) are frequently used to longitudinally investigate the mediation effects of treatment on the level and change of outcome through the level and change of mediator. An important but often violated assumption in empirical PP-LGCMM analysis is the absence of omitted confounders of the relationships among treatment, mediator, and outcome. In this study, we analytically examined how omitting pretreatment confounders impacts the inference of mediation from the PP-LGCMM. Using the analytical results, we developed three sensitivity analysis approaches for the PP-LGCMM, including the frequentist, Bayesian, and Monte Carlo approaches. The three approaches help investigate different questions regarding the robustness of mediation results from the PP-LGCMM, and handle the uncertainty in the sensitivity parameters differently. Applications of the three sensitivity analyses are illustrated using a real-data example. A user-friendly Shiny web application is developed to conduct the sensitivity analyses.</p>","PeriodicalId":21964,"journal":{"name":"Structural Equation Modeling: A Multidisciplinary Journal","volume":"47 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Equation Modeling: A Multidisciplinary Journal","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/10705511.2023.2189551","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Parallel process latent growth curve mediation models (PP-LGCMMs) are frequently used to longitudinally investigate the mediation effects of treatment on the level and change of outcome through the level and change of mediator. An important but often violated assumption in empirical PP-LGCMM analysis is the absence of omitted confounders of the relationships among treatment, mediator, and outcome. In this study, we analytically examined how omitting pretreatment confounders impacts the inference of mediation from the PP-LGCMM. Using the analytical results, we developed three sensitivity analysis approaches for the PP-LGCMM, including the frequentist, Bayesian, and Monte Carlo approaches. The three approaches help investigate different questions regarding the robustness of mediation results from the PP-LGCMM, and handle the uncertainty in the sensitivity parameters differently. Applications of the three sensitivity analyses are illustrated using a real-data example. A user-friendly Shiny web application is developed to conduct the sensitivity analyses.
期刊介绍:
Structural Equation Modeling: A Multidisciplinary Journal publishes refereed scholarly work from all academic disciplines interested in structural equation modeling. These disciplines include, but are not limited to, psychology, medicine, sociology, education, political science, economics, management, and business/marketing. Theoretical articles address new developments; applied articles deal with innovative structural equation modeling applications; the Teacher’s Corner provides instructional modules on aspects of structural equation modeling; book and software reviews examine new modeling information and techniques; and advertising alerts readers to new products. Comments on technical or substantive issues addressed in articles or reviews published in the journal are encouraged; comments are reviewed, and authors of the original works are invited to respond.