Luhui Ning, Xin Lou, Qili Ma, Yaochen Yang, Nan Luo, Ke Chen, Fanlong Meng, Xin Zhou, Mingcheng Yang, Yi Peng
{"title":"Hydrodynamics-Induced Long-Range Attraction between Plates in Bacterial Suspensions","authors":"Luhui Ning, Xin Lou, Qili Ma, Yaochen Yang, Nan Luo, Ke Chen, Fanlong Meng, Xin Zhou, Mingcheng Yang, Yi Peng","doi":"10.1103/physrevlett.131.158301","DOIUrl":null,"url":null,"abstract":"We perform optical-tweezers experiments and mesoscale fluid simulations to study the effective interactions between two parallel plates immersed in bacterial suspensions. The plates are found to experience a long-range attraction, which increases linearly with bacterial density and decreases with plate separation. The higher bacterial density and orientation order between plates observed in the experiments imply that the long-range effective attraction mainly arises from the bacterial flow field, instead of the direct bacterium-plate collisions, which is confirmed by the simulations. Furthermore, the hydrodynamic contribution is inversely proportional to the squared interplate separation in the far field. Our findings highlight the importance of hydrodynamics on the effective forces between passive objects in active baths, providing new possibilities to control activity-directed assembly.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"29 3","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.131.158301","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
We perform optical-tweezers experiments and mesoscale fluid simulations to study the effective interactions between two parallel plates immersed in bacterial suspensions. The plates are found to experience a long-range attraction, which increases linearly with bacterial density and decreases with plate separation. The higher bacterial density and orientation order between plates observed in the experiments imply that the long-range effective attraction mainly arises from the bacterial flow field, instead of the direct bacterium-plate collisions, which is confirmed by the simulations. Furthermore, the hydrodynamic contribution is inversely proportional to the squared interplate separation in the far field. Our findings highlight the importance of hydrodynamics on the effective forces between passive objects in active baths, providing new possibilities to control activity-directed assembly.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks