Latent Class Analysis with Measurement Invariance Testing: Simulation Study to Compare Overall Likelihood Ratio vs Residual Fit Statistics Based Model Selection
IF 2.5 2区 心理学Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
{"title":"Latent Class Analysis with Measurement Invariance Testing: Simulation Study to Compare Overall Likelihood Ratio vs Residual Fit Statistics Based Model Selection","authors":"Zsuzsa Bakk","doi":"10.1080/10705511.2023.2233115","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b></p><p>A standard assumption of latent class (LC) analysis is conditional independence, that is the items of the LC are independent of the covariates given the LCs. Several approaches have been proposed for identifying violations of this assumption. The recently proposed likelihood ratio approach is compared to residual statistics (bivariate residuals [BVR] and expected parameter change [EPC] statistics) for identifying nonuniform direct effect of covariates on the items of the LC model. The simulation study results show that the likelihood ratio (LR) test correctly identifies direct effects more often than the BVR statistics, showing comparable results to the EPC statistic in many situations- this at the price of having also a higher false positive rate than BVR. A real data example illustrates the use of the three procedures. Overall the combined use of residual statistics and LR testing is recommended for applied research.</p>","PeriodicalId":21964,"journal":{"name":"Structural Equation Modeling: A Multidisciplinary Journal","volume":"17 9","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Equation Modeling: A Multidisciplinary Journal","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/10705511.2023.2233115","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A standard assumption of latent class (LC) analysis is conditional independence, that is the items of the LC are independent of the covariates given the LCs. Several approaches have been proposed for identifying violations of this assumption. The recently proposed likelihood ratio approach is compared to residual statistics (bivariate residuals [BVR] and expected parameter change [EPC] statistics) for identifying nonuniform direct effect of covariates on the items of the LC model. The simulation study results show that the likelihood ratio (LR) test correctly identifies direct effects more often than the BVR statistics, showing comparable results to the EPC statistic in many situations- this at the price of having also a higher false positive rate than BVR. A real data example illustrates the use of the three procedures. Overall the combined use of residual statistics and LR testing is recommended for applied research.
期刊介绍:
Structural Equation Modeling: A Multidisciplinary Journal publishes refereed scholarly work from all academic disciplines interested in structural equation modeling. These disciplines include, but are not limited to, psychology, medicine, sociology, education, political science, economics, management, and business/marketing. Theoretical articles address new developments; applied articles deal with innovative structural equation modeling applications; the Teacher’s Corner provides instructional modules on aspects of structural equation modeling; book and software reviews examine new modeling information and techniques; and advertising alerts readers to new products. Comments on technical or substantive issues addressed in articles or reviews published in the journal are encouraged; comments are reviewed, and authors of the original works are invited to respond.