Riley Barton, Christina M. Richardson, Evelyn Pae, Maya S. Montalvo, Michael Redmond, Margaret A. Zimmer, Sasha Wagner
{"title":"Hydrology, rather than wildfire burn extent, determines post-fire organic and black carbon export from mountain rivers in central coastal California","authors":"Riley Barton, Christina M. Richardson, Evelyn Pae, Maya S. Montalvo, Michael Redmond, Margaret A. Zimmer, Sasha Wagner","doi":"10.1002/lol2.10360","DOIUrl":null,"url":null,"abstract":"<p>Coastal mountain rivers export disproportionately high quantities of terrestrial organic carbon (OC) directly to the ocean, feeding microbial communities and altering coastal ecology. To better predict and mitigate the effects of wildfires on aquatic ecosystems and resources, we must evaluate the relationships between fire, hydrology, and carbon export, particularly in the fire-prone western United States. This study examined the spatiotemporal export of particulate and dissolved OC (POC and DOC, respectively) and particulate and dissolved black carbon (PBC and DBC, respectively) from five coastal mountain watersheds following the 2020 CZU Lightning Complex Fires (California, USA). Despite high variability in watershed burn extent (20–98%), annual POC, DOC, PBC, and DBC concentrations remained relatively stable among the different watersheds. Instead, they correlated significantly with watershed discharge. Our findings indicate that hydrology, rather than burn extent, is a primary driver of post-fire carbon export in coastal mountain watersheds.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"9 1","pages":"70-80"},"PeriodicalIF":5.1000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10360","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10360","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Coastal mountain rivers export disproportionately high quantities of terrestrial organic carbon (OC) directly to the ocean, feeding microbial communities and altering coastal ecology. To better predict and mitigate the effects of wildfires on aquatic ecosystems and resources, we must evaluate the relationships between fire, hydrology, and carbon export, particularly in the fire-prone western United States. This study examined the spatiotemporal export of particulate and dissolved OC (POC and DOC, respectively) and particulate and dissolved black carbon (PBC and DBC, respectively) from five coastal mountain watersheds following the 2020 CZU Lightning Complex Fires (California, USA). Despite high variability in watershed burn extent (20–98%), annual POC, DOC, PBC, and DBC concentrations remained relatively stable among the different watersheds. Instead, they correlated significantly with watershed discharge. Our findings indicate that hydrology, rather than burn extent, is a primary driver of post-fire carbon export in coastal mountain watersheds.
期刊介绍:
Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.