Prediction of declarative memory profile in panic disorder patients: a machine learning-based approach.

IF 3.6 3区 医学 Q1 PSYCHIATRY
Revista Brasileira de Psiquiatria Pub Date : 2023-11-01 Epub Date: 2023-10-25 DOI:10.47626/1516-4446-2023-3291
Felipe Dalvi-Garcia, Laiana Azevedo Quagliato, Donald J Bearden, Antonio Egidio Nardi
{"title":"Prediction of declarative memory profile in panic disorder patients: a machine learning-based approach.","authors":"Felipe Dalvi-Garcia, Laiana Azevedo Quagliato, Donald J Bearden, Antonio Egidio Nardi","doi":"10.47626/1516-4446-2023-3291","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop a classification framework based on random forest (RF) modeling to outline the declarative memory profile of patients with panic disorder (PD) compared to a healthy control sample.</p><p><strong>Methods: </strong>We developed RF models to classify the declarative memory profile of PD patients in comparison to a healthy control sample using the Rey Auditory Verbal Learning Test (RAVLT). For this study, a total of 299 patients with PD living in the city of Rio de Janeiro (70.9% females, age 39.9 ± 7.3 years old) were recruited through clinician referrals or self/family referrals.</p><p><strong>Results: </strong>Our RF models successfully predicted declarative memory profiles in patients with PD based on RAVLT scores (lowest area under the curve [AUC] of 0.979, for classification; highest root mean squared percentage [RMSPE] of 17.2%, for regression) using relatively bias-free clinical data, such as sex, age, and body mass index (BMI).</p><p><strong>Conclusions: </strong>Our findings also suggested that BMI, used as a proxy for diet and exercises habits, plays an important role in declarative memory. Our framework can be extended and used as a prospective tool to classify and examine associations between clinical features and declarative memory in PD patients.</p>","PeriodicalId":21244,"journal":{"name":"Revista Brasileira de Psiquiatria","volume":" ","pages":"482-490"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897768/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Psiquiatria","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.47626/1516-4446-2023-3291","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To develop a classification framework based on random forest (RF) modeling to outline the declarative memory profile of patients with panic disorder (PD) compared to a healthy control sample.

Methods: We developed RF models to classify the declarative memory profile of PD patients in comparison to a healthy control sample using the Rey Auditory Verbal Learning Test (RAVLT). For this study, a total of 299 patients with PD living in the city of Rio de Janeiro (70.9% females, age 39.9 ± 7.3 years old) were recruited through clinician referrals or self/family referrals.

Results: Our RF models successfully predicted declarative memory profiles in patients with PD based on RAVLT scores (lowest area under the curve [AUC] of 0.979, for classification; highest root mean squared percentage [RMSPE] of 17.2%, for regression) using relatively bias-free clinical data, such as sex, age, and body mass index (BMI).

Conclusions: Our findings also suggested that BMI, used as a proxy for diet and exercises habits, plays an important role in declarative memory. Our framework can be extended and used as a prospective tool to classify and examine associations between clinical features and declarative memory in PD patients.

惊恐障碍患者声明性记忆谱的预测:一种基于机器学习的方法。
引言:惊恐障碍(PD)很常见,其定义是反复发生的、意外的惊恐发作以及对额外发作及其后果的持续担忧。焦虑会影响陈述性记忆,这对重塑适应不良的思想和信念以及学习健康的应对策略很重要。方法:我们开发了随机森林(RF)模型,使用Rey听觉言语学习测试(RAVLT)对PD患者的陈述性记忆进行分类,并与健康对照样本进行比较。在这项研究中,共有299名居住在里约热内卢市的PD患者(70.9%为女性,年龄39.9 7.3岁)通过临床医生转诊或自我/家庭转诊招募。结果:我们的RF模型基于RAVLT评分(最低曲线下面积0.979,用于分类;最高均方根百分比17.2%,用于回归),使用相对无偏见的临床数据,如性别、年龄和体重指数(BMI),成功预测了PD患者的陈述性记忆谱。结论:我们的研究结果还表明,作为饮食和锻炼习惯的代表,它在陈述性记忆中起着重要作用。我们的框架可以扩展并用作前瞻性工具,对PD患者的临床特征和陈述性记忆之间的关联进行分类和检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista Brasileira de Psiquiatria
Revista Brasileira de Psiquiatria 医学-精神病学
CiteScore
6.60
自引率
0.00%
发文量
83
审稿时长
6-12 weeks
期刊介绍: The Revista Brasileira de Psiquiatria (RBP) is the official organ of the Associação Brasileira de Psiquiatria (ABP - Brazilian Association of Psychiatry). The Brazilian Journal of Psychiatry is a bimonthly publication that aims to publish original manuscripts in all areas of psychiatry, including public health, clinical epidemiology, basic science, and mental health problems. The journal is fully open access, and there are no article processing or publication fees. Articles must be written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信