Mattia Scandolo, Johannes Pausch, Michael E. Cates
{"title":"Active Ising Models of flocking: a field-theoretic approach","authors":"Mattia Scandolo, Johannes Pausch, Michael E. Cates","doi":"10.1140/epje/s10189-023-00364-w","DOIUrl":null,"url":null,"abstract":"<p>Using an approach based on Doi-Peliti field theory, we study several different Active Ising Models (AIMs), in each of which collective motion (flocking) of self-propelled particles arises from the spontaneous breaking of a discrete symmetry. We test the predictive power of our field theories by deriving the hydrodynamic equations for the different microscopic choices of aligning processes that define our various models. At deterministic level, the resulting equations largely confirm known results, but our approach has the advantage of allowing systematic generalization to include noise terms. Study of the resulting hydrodynamics allows us to confirm that the various AIMs share the same phenomenology of a first-order transition from isotropic to flocked states whenever the self-propulsion speed is nonzero, with an important exception for the case where particles align only pairwise locally. Remarkably, this variant fails entirely to give flocking—an outcome that was foreseen in previous work, but is confirmed here and explained in terms of the scalings of various terms in the hydrodynamic limit. Finally, we discuss our AIMs in the limit of zero self-propulsion where the ordering transition is continuous. In this limit, each model is still out of equilibrium because the dynamical rules continue to break detailed balance, yet it has been argued that an equilibrium universality class (Model C) prevails. We study field-theoretically the connection between our AIMs and Model C, arguing that these particular models (though not AIMs in general) lie outside the Model C class. We link this to the fact that in our AIMs without self-propulsion, detailed balance is not merely still broken, but replaced by a different dynamical symmetry in which the dynamics of the particle density is independent of the spin state.</p><p>.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"46 10","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10603022/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-023-00364-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Using an approach based on Doi-Peliti field theory, we study several different Active Ising Models (AIMs), in each of which collective motion (flocking) of self-propelled particles arises from the spontaneous breaking of a discrete symmetry. We test the predictive power of our field theories by deriving the hydrodynamic equations for the different microscopic choices of aligning processes that define our various models. At deterministic level, the resulting equations largely confirm known results, but our approach has the advantage of allowing systematic generalization to include noise terms. Study of the resulting hydrodynamics allows us to confirm that the various AIMs share the same phenomenology of a first-order transition from isotropic to flocked states whenever the self-propulsion speed is nonzero, with an important exception for the case where particles align only pairwise locally. Remarkably, this variant fails entirely to give flocking—an outcome that was foreseen in previous work, but is confirmed here and explained in terms of the scalings of various terms in the hydrodynamic limit. Finally, we discuss our AIMs in the limit of zero self-propulsion where the ordering transition is continuous. In this limit, each model is still out of equilibrium because the dynamical rules continue to break detailed balance, yet it has been argued that an equilibrium universality class (Model C) prevails. We study field-theoretically the connection between our AIMs and Model C, arguing that these particular models (though not AIMs in general) lie outside the Model C class. We link this to the fact that in our AIMs without self-propulsion, detailed balance is not merely still broken, but replaced by a different dynamical symmetry in which the dynamics of the particle density is independent of the spin state.
期刊介绍:
EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems.
Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics.
Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter.
Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research.
The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.