Christian Schmidt, Mike Perroulaz, Yago Perez, Jérémie Rosset, Gabriel Wüthrich, Davide Malatesta, Pierre Samozino
{"title":"A New Way to Restrict Free Leg Movement During Unilateral Vertical Jump Test.","authors":"Christian Schmidt, Mike Perroulaz, Yago Perez, Jérémie Rosset, Gabriel Wüthrich, Davide Malatesta, Pierre Samozino","doi":"10.1123/jab.2022-0296","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this investigation was (1) to test the effect of movement restriction of the free leg during unilateral vertical jump on performance and power output comparing 2 different jump techniques: flexed (Classic technique) and straight (FC Luzern technique) free leg, and (2) to test the correlation between performance and power output obtained using these 2 techniques. Twenty elite soccer players performed squat (SJ) and countermovement (CMJ) jumps on each leg. The jump height and peak power output were compared between the 2 techniques for both legs. The jump height and peak power were significantly higher for the classic test for SJ and CMJ (P < .001) with no side effects or interactions. The angular range of motion of the free leg was higher for the Classic test than for the FC Lucerne test (P < .001), with no difference in the angular range of motion of the trunk. A moderate correlation was found between the 2 techniques on peak power (SJ: r = .626; CMJ: r = .649) and jump height (SJ: r = .742; CMJ: r = .891). Consequently, FC Lucerne technique, limiting the contribution of the free leg, is more appropriate to assess lower limb strength capacities during unilateral jump test.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":" ","pages":"21-28"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1123/jab.2022-0296","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this investigation was (1) to test the effect of movement restriction of the free leg during unilateral vertical jump on performance and power output comparing 2 different jump techniques: flexed (Classic technique) and straight (FC Luzern technique) free leg, and (2) to test the correlation between performance and power output obtained using these 2 techniques. Twenty elite soccer players performed squat (SJ) and countermovement (CMJ) jumps on each leg. The jump height and peak power output were compared between the 2 techniques for both legs. The jump height and peak power were significantly higher for the classic test for SJ and CMJ (P < .001) with no side effects or interactions. The angular range of motion of the free leg was higher for the Classic test than for the FC Lucerne test (P < .001), with no difference in the angular range of motion of the trunk. A moderate correlation was found between the 2 techniques on peak power (SJ: r = .626; CMJ: r = .649) and jump height (SJ: r = .742; CMJ: r = .891). Consequently, FC Lucerne technique, limiting the contribution of the free leg, is more appropriate to assess lower limb strength capacities during unilateral jump test.
期刊介绍:
The mission of the Journal of Applied Biomechanics (JAB) is to disseminate the highest quality peer-reviewed studies that utilize biomechanical strategies to advance the study of human movement. Areas of interest include clinical biomechanics, gait and posture mechanics, musculoskeletal and neuromuscular biomechanics, sport mechanics, and biomechanical modeling. Studies of sport performance that explicitly generalize to broader activities, contribute substantially to fundamental understanding of human motion, or are in a sport that enjoys wide participation, are welcome. Also within the scope of JAB are studies using biomechanical strategies to investigate the structure, control, function, and state (health and disease) of animals.