Similarity in milk microbiota in replicates

IF 3.9 3区 生物学 Q2 MICROBIOLOGY
MicrobiologyOpen Pub Date : 2023-09-30 DOI:10.1002/mbo3.1383
Josef Dahlberg, Erik Pelve, Johan Dicksved
{"title":"Similarity in milk microbiota in replicates","authors":"Josef Dahlberg,&nbsp;Erik Pelve,&nbsp;Johan Dicksved","doi":"10.1002/mbo3.1383","DOIUrl":null,"url":null,"abstract":"<p>Receiving the same results from repeated analysis of the same sample is a basic principle in science. The inability to reproduce previously published results has led to discussions of a reproducibility crisis within science. For studies of microbial communities, the problem of reproducibility is more pronounced and has, in some fields, led to a discussion on the very existence of a constantly present microbiota. In this study, DNA from 44 bovine milk samples were extracted twice and the V3–V4 region of the 16S rRNA gene was sequenced in two separate runs. The FASTQ files from the two data sets were run through the same bioinformatics pipeline using the same settings and results from the two data sets were compared. Milk samples collected maximally 2 h apart were used as replicates and permitted comparisons to be made within the same run. Results show a significant difference in species richness between the two sequencing runs although Shannon and Simpson's diversity was the same. Multivariate analyses of all samples demonstrate that the sequencing run was a driver for variation. Direct comparison of similarity between samples and sequencing run showed an average similarity of 42%–45% depending on whether binary or abundance-based similarity indices were used. Within-run comparisons of milk samples collected maximally 2 h apart showed an average similarity of 39%–47% depending on the similarity index used and that similarity differed significantly between runs. We conclude that repeated DNA extraction and sequencing significantly can affect the results of a low microbial biomass microbiota study.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":"12 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mbo3.1383","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MicrobiologyOpen","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mbo3.1383","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Receiving the same results from repeated analysis of the same sample is a basic principle in science. The inability to reproduce previously published results has led to discussions of a reproducibility crisis within science. For studies of microbial communities, the problem of reproducibility is more pronounced and has, in some fields, led to a discussion on the very existence of a constantly present microbiota. In this study, DNA from 44 bovine milk samples were extracted twice and the V3–V4 region of the 16S rRNA gene was sequenced in two separate runs. The FASTQ files from the two data sets were run through the same bioinformatics pipeline using the same settings and results from the two data sets were compared. Milk samples collected maximally 2 h apart were used as replicates and permitted comparisons to be made within the same run. Results show a significant difference in species richness between the two sequencing runs although Shannon and Simpson's diversity was the same. Multivariate analyses of all samples demonstrate that the sequencing run was a driver for variation. Direct comparison of similarity between samples and sequencing run showed an average similarity of 42%–45% depending on whether binary or abundance-based similarity indices were used. Within-run comparisons of milk samples collected maximally 2 h apart showed an average similarity of 39%–47% depending on the similarity index used and that similarity differed significantly between runs. We conclude that repeated DNA extraction and sequencing significantly can affect the results of a low microbial biomass microbiota study.

Abstract Image

复制品中牛奶微生物群的相似性
从同一样本的重复分析中获得相同的结果是科学的基本原则。由于无法再现先前发表的结果,科学界开始讨论再现性危机。对于微生物群落的研究,再现性问题更为突出,在某些领域,这导致了对不断存在的微生物群的存在的讨论。在这项研究中,从44个牛奶样本中提取了两次DNA,并在两次单独的试验中对16S rRNA基因的V3–V4区域进行了测序。使用相同的设置,通过相同的生物信息学管道运行来自两个数据集的FASTQ文件,并比较两个数据集中的结果。最多采集2个牛奶样本 h作为重复,并允许在同一次运行中进行比较。结果显示,尽管Shannon和Simpson的多样性相同,但两次测序的物种丰富度存在显著差异。对所有样本的多变量分析表明,测序是变异的驱动因素。样本之间的相似性和测序运行的直接比较显示,根据使用的是二进制还是基于丰度的相似性指数,平均相似性为42%-45%。最大采集2个牛奶样本的运行内比较 h的平均相似性为39%-47%,这取决于所使用的相似性指数,并且不同跑步之间的相似性差异很大。我们得出的结论是,重复的DNA提取和测序会显著影响低微生物生物量微生物群研究的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MicrobiologyOpen
MicrobiologyOpen MICROBIOLOGY-
CiteScore
8.00
自引率
0.00%
发文量
78
审稿时长
20 weeks
期刊介绍: MicrobiologyOpen is a peer reviewed, fully open access, broad-scope, and interdisciplinary journal delivering rapid decisions and fast publication of microbial science, a field which is undergoing a profound and exciting evolution in this post-genomic era. The journal aims to serve the research community by providing a vehicle for authors wishing to publish quality research in both fundamental and applied microbiology. Our goal is to publish articles that stimulate discussion and debate, as well as add to our knowledge base and further the understanding of microbial interactions and microbial processes. MicrobiologyOpen gives prompt and equal consideration to articles reporting theoretical, experimental, applied, and descriptive work in all aspects of bacteriology, virology, mycology and protistology, including, but not limited to: - agriculture - antimicrobial resistance - astrobiology - biochemistry - biotechnology - cell and molecular biology - clinical microbiology - computational, systems, and synthetic microbiology - environmental science - evolutionary biology, ecology, and systematics - food science and technology - genetics and genomics - geobiology and earth science - host-microbe interactions - infectious diseases - natural products discovery - pharmaceutical and medicinal chemistry - physiology - plant pathology - veterinary microbiology We will consider submissions across unicellular and cell-cluster organisms: prokaryotes (bacteria, archaea) and eukaryotes (fungi, protists, microalgae, lichens), as well as viruses and prions infecting or interacting with microorganisms, plants and animals, including genetic, biochemical, biophysical, bioinformatic and structural analyses. The journal features Original Articles (including full Research articles, Method articles, and Short Communications), Commentaries, Reviews, and Editorials. Original papers must report well-conducted research with conclusions supported by the data presented in the article. We also support confirmatory research and aim to work with authors to meet reviewer expectations. MicrobiologyOpen publishes articles submitted directly to the journal and those referred from other Wiley journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信