{"title":"Submergence tolerance in immature stages of the stalk-eyed fly Sphyracephala detrahens (Diptera: Diopsidae)","authors":"Ayumi Kudo","doi":"10.1111/phen.12401","DOIUrl":null,"url":null,"abstract":"Sphyracephala detrahens (Walker, 1860) (Diptera: Diopsidae) inhabits the riparian zones of streams and rivers. Because of the limited dispersal ability of S. detrahens during egg, larval, and pupal stages, immature individuals are at risk of being submerged by floodwater after heavy rain. In this study, I evaluated the submergence tolerances of immatures of S. detrahens by comparing them to immatures of Drosophila melanogaster, which also feed on rotten fruits but are not restricted to the riparian zone. The results showed that S. detrahens eggs were susceptible to desiccation, but more than 80% of eggs hatched after full submergence. Later instar larvae were more resistant to full submergence than earlier instar larvae. The duration of submergence causing 50% pupation (PD50) in the first, second, and third‐instar larvae of S. detrahens were 15.88, 58.46, and 91.74 h, respectively. The PD50 of the third‐instar larvae of D. melanogaster was 20.01 h. Third‐instar S. detrahens larvae continued to develop in water for a longer duration than D. melanogaster larvae of the same instar. In the pupal stages, late pupae tended to remain afloat longer than early pupae. The duration of submergence causing 50% emergence (ED50) of adults from early and late pupae were 40.70 and 104.74 h, respectively. In the larval and pupal stages, individuals in the later developmental phases tended to be more tolerant to full submergence. The submergence tolerance of the immature stages of S. detrahens may reflect adaptation to an environment with fluctuating water levels.","PeriodicalId":20081,"journal":{"name":"Physiological Entomology","volume":"48 1","pages":"45-53"},"PeriodicalIF":1.6000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/phen.12401","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sphyracephala detrahens (Walker, 1860) (Diptera: Diopsidae) inhabits the riparian zones of streams and rivers. Because of the limited dispersal ability of S. detrahens during egg, larval, and pupal stages, immature individuals are at risk of being submerged by floodwater after heavy rain. In this study, I evaluated the submergence tolerances of immatures of S. detrahens by comparing them to immatures of Drosophila melanogaster, which also feed on rotten fruits but are not restricted to the riparian zone. The results showed that S. detrahens eggs were susceptible to desiccation, but more than 80% of eggs hatched after full submergence. Later instar larvae were more resistant to full submergence than earlier instar larvae. The duration of submergence causing 50% pupation (PD50) in the first, second, and third‐instar larvae of S. detrahens were 15.88, 58.46, and 91.74 h, respectively. The PD50 of the third‐instar larvae of D. melanogaster was 20.01 h. Third‐instar S. detrahens larvae continued to develop in water for a longer duration than D. melanogaster larvae of the same instar. In the pupal stages, late pupae tended to remain afloat longer than early pupae. The duration of submergence causing 50% emergence (ED50) of adults from early and late pupae were 40.70 and 104.74 h, respectively. In the larval and pupal stages, individuals in the later developmental phases tended to be more tolerant to full submergence. The submergence tolerance of the immature stages of S. detrahens may reflect adaptation to an environment with fluctuating water levels.
期刊介绍:
Physiological Entomology broadly considers “how insects work” and how they are adapted to their environments at all levels from genes and molecules, anatomy and structure, to behaviour and interactions of whole organisms. We publish high quality experiment based papers reporting research on insects and other arthropods as well as occasional reviews. The journal thus has a focus on physiological and experimental approaches to understanding how insects function. The broad subject coverage of the Journal includes, but is not limited to:
-experimental analysis of behaviour-
behavioural physiology and biochemistry-
neurobiology and sensory physiology-
general physiology-
circadian rhythms and photoperiodism-
chemical ecology