On splitting trees

Pub Date : 2023-05-28 DOI:10.1002/malq.202200022
Giorgio Laguzzi, Heike Mildenberger, Brendan Stuber-Rousselle
{"title":"On splitting trees","authors":"Giorgio Laguzzi,&nbsp;Heike Mildenberger,&nbsp;Brendan Stuber-Rousselle","doi":"10.1002/malq.202200022","DOIUrl":null,"url":null,"abstract":"<p>We investigate two variants of splitting tree forcing, their ideals and regularity properties. We prove connections with other well-known notions, such as Lebesgue measurablility, Baire- and Doughnut-property and the Marczewski field. Moreover, we prove that any <i>absolute</i> amoeba forcing for splitting trees necessarily adds a dominating real, providing more support to Hein's and Spinas' conjecture that <math>\n <semantics>\n <mrow>\n <mo>add</mo>\n <mo>(</mo>\n <msub>\n <mi>I</mi>\n <mi>SP</mi>\n </msub>\n <mo>)</mo>\n <mo>≤</mo>\n <mi>b</mi>\n </mrow>\n <annotation>$\\operatorname{add}(\\mathcal {I}_\\mathbb {SP}) \\le \\mathfrak {b}$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200022","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We investigate two variants of splitting tree forcing, their ideals and regularity properties. We prove connections with other well-known notions, such as Lebesgue measurablility, Baire- and Doughnut-property and the Marczewski field. Moreover, we prove that any absolute amoeba forcing for splitting trees necessarily adds a dominating real, providing more support to Hein's and Spinas' conjecture that add ( I SP ) b $\operatorname{add}(\mathcal {I}_\mathbb {SP}) \le \mathfrak {b}$ .

分享
查看原文
关于劈树
我们研究了分裂树强迫的两种变体,它们的理想和正则性性质。我们证明了与其他著名概念的联系,如Lebesgue可测性、Baire和Doughnut性质以及Marczewski域。此外,我们证明了任何绝对的变形虫强迫分裂树木必然会增加一个主导的实数,为Hein和Spinas关于add(I SP)≤b$\operatorname{add}(\mathcal{I}_\mathbb{SP})\le\mathfrak{b}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信