{"title":"Microbial Models for Simulating Soil Carbon Dynamics: A Review","authors":"Aneesh Kumar Chandel, Lifen Jiang, Yiqi Luo","doi":"10.1029/2023JG007436","DOIUrl":null,"url":null,"abstract":"<p>Soils store the largest amount of carbon (C) in the biosphere, and the C pool in soil is critical to the global C balance. Numerous microbial models have been developed over the last few decades to represent microbial processes that regulate the responses of soil organic carbon (SOC) to climate change. However, the representation of microbial processes varies, and how microbial processes are incorporated into SOC models has not been well explored. Here, we reviewed 71 microbial models to characterize the microbial processes incorporated into SOC models and analyzed variations in mechanistic complexity. We revealed that (a) four processes (microbial-mediated decomposition, mineral interaction, microbial necromass recycling, and active and dormant microbial dynamics) are commonly incorporated in microbial models, (b) ∼48% of models simulate only one microbial process (i.e., microbial-mediated decomposition) and 35% of models simulate two microbial processes: for example, microbial-mediated decomposition and mineral interaction, (c) more than 80% microbial models use nonlinear equations, such as forward Michaelis-Menten kinetics, to represent SOC decomposition, (d) the concept of persistence of SOC due to its intrinsic properties has been replaced by organo-mineral interaction (∼39% of microbial models) that protects SOC from decomposition, and (e) various temperature and moisture modifiers and pH effects have been used to explain the environmental effect on microbial processes. In the future, to realistically incorporate microbial processes into Earth System Models, it is imperative to identify experimental evidence on rate limitation processes and firmly ground model structure on the field and laboratory data.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"128 8","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JG007436","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soils store the largest amount of carbon (C) in the biosphere, and the C pool in soil is critical to the global C balance. Numerous microbial models have been developed over the last few decades to represent microbial processes that regulate the responses of soil organic carbon (SOC) to climate change. However, the representation of microbial processes varies, and how microbial processes are incorporated into SOC models has not been well explored. Here, we reviewed 71 microbial models to characterize the microbial processes incorporated into SOC models and analyzed variations in mechanistic complexity. We revealed that (a) four processes (microbial-mediated decomposition, mineral interaction, microbial necromass recycling, and active and dormant microbial dynamics) are commonly incorporated in microbial models, (b) ∼48% of models simulate only one microbial process (i.e., microbial-mediated decomposition) and 35% of models simulate two microbial processes: for example, microbial-mediated decomposition and mineral interaction, (c) more than 80% microbial models use nonlinear equations, such as forward Michaelis-Menten kinetics, to represent SOC decomposition, (d) the concept of persistence of SOC due to its intrinsic properties has been replaced by organo-mineral interaction (∼39% of microbial models) that protects SOC from decomposition, and (e) various temperature and moisture modifiers and pH effects have been used to explain the environmental effect on microbial processes. In the future, to realistically incorporate microbial processes into Earth System Models, it is imperative to identify experimental evidence on rate limitation processes and firmly ground model structure on the field and laboratory data.
期刊介绍:
JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology